

Printed Pages: 4

\*AS-202(C)\*

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 199240

Roll No.

# B. Tech.

# (SEM. II) THEORY EXAMINATION, 2014-15 ENGINEERING PHYSICS-II (C)

(FOR CS/IT etc.)

Time: 3 Hours]

[Total Marks: 80

Note: Attempt questions from each Section as per

instructions.

## SECTION - A

1 Attempt all parts of this question. 2×8=16 Each part carries 2 marks.

- (a) What do you mean by phase velocity and group velocity?
- (b) Explain Heisenberg's uncertainty principle?
- (c) Distinguish between Type-I and Type-II superconductors.
- (d) What are buckyballs?
- (e) What are the properties of diamagnetic materials?

199240]

1

[Contd...



- (f) What is dielectric loss?
- (g) What do you mean by Hall Effect?
- (h) What is image processing?

#### **SECTION - B**

- 2 Attempt any three parts of this question. 8×3=24 Each part carries 8 marks.
  - (a) Find the de-Broglie wavelength of a neutron of energy 12.8MeV. Mass of neutron is  $1.675 \times 10^{-27}$ kg.
  - (b) An electron has a speed of 1.05×10<sup>4</sup>m/s within the accuracy of 0.01%. Calculate uncertainty in the position of the electron.
  - (c) The critical field for niobium is 1×10<sup>5</sup> A/m at 8K and 2×10<sup>5</sup> A/m at 0K. Calculate the transition temperature of the element.
  - (d) An iron rod of volume 10<sup>-3</sup> m<sup>3</sup> and relative permeability 1200 is placed inside a long solenoid wound with 5 turns per cm. If a current of 0.5 amp is passed through the solenoid, find the magnetic moment of the rod.
  - (e) At what temperature can we expect a 10% probability that electrons in a metal will have an energy which is 1% above  $E_F$ . The Fermi energy of the metal is 5.5 eV.

199240]

2

Contd...



### SECTION - C

Attempt any one part of all the questions of 8×5=40 this section. Each question carries 8 marks.

- 3 (a) What are matter waves? Describe Davisson and Germer experiment for the study of electron diffraction and prove that electrons possess wave nature.
  - (b) Find an expression for the energy states of a particle in a one -dimensional box. Also calculate the normalized wave function.
- 4 (a) How are Cooper pairs formed? Explain the BCS theory of superconductor.
  - (b) What are carbon nanotubes? Describe a method for synthesis of carbon nanotubes.
- 5 (a) What do you mean by polarization in dielectrics? Explain different types of polarization and their mechanism.
  - (b) What is meant by Hysteresis? Explain hysteresis loss. Prove that the area of the B-H curve is equal to the hysteresis loss per unit volume of the specimen in one cycle.

199240]

3

[Contd...



- 6 (a) What is a solar cell? Describe its working with suitable diagram.
  - (b) What do you mean by Fermi level? Show that the Fermi level of an intrinsic semiconductor lies half way between conduction and valance bands.
- 7 (a) What is a spatial light modulator? Explain the working of liquid spatial light modulator.
  - (b) What do you understand by memories in computer? Describe various types of memories in detail.

## Physical Constants:

Mass of electron  $m_e = 9.1 \times 10^{-31} \text{ kg}$ 

Speed of Light  $c = 3 \times 10^8 \text{ m/s}$ 

Plank's constant  $h = 6.63 \times 10^{-34} \text{ J-s}$ 

Mass of Proton  $m_p = 1.67 \times 10^{-27} \text{ kg}$ 

Permeability of free space  $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ 

Permittivity of free space  $\epsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$ 

Avogadro's number  $N = 6.023 \times 10^{23}$  per mole

199240] 4