l	FirstRanker.com					
Tinten Fagest stranker's choice www.FirstRan NAS-201/EAS-201 www.FirstRan						
				ker.		
	Answer Books)					
	Paper ID : 199220	Roll No.				

B. TECH.

Theory Examination (Semester-II) 2015-16

ENGINEERING PHYSICS-II

Time : 3 Hours

Max. Marks : 100

ė,

Note: This question paper contains 3 sections. Attempt questions from each section. Take standard values wherever needed.

Section-A

- Q1. Attempt all parts. All parts carry equal marks. Write answer of
each part in short.(2×10=20)
 - (a) What is primitive's cell ?
 - (b) What is atomic radius of a simple cubic structure with a cube edge a ?
 - (c) What is internal field in dielectric ?
 - (d) What type of magnetic materials is used to make core of transformers ?

	www.firstRan	P.T.O.
706/ 352 /2480/62000	ker.com	

www.Fi ker.e

- (f) If a plane electromagnetic wave in free space has magnitude of H 1 A/m. What is the magnitude of E ?
- (g) Define the position of Fermi level in intrinsic semiconductor?
- (h) What do you understand by transition temperature 2
- (i) What is the value of critical field of a super conductor at transition temperature ?
- (j) What are the types of single walled nanotube ?

Section-B

- Q2. Attempt any five questions from this section. $(5 \times 10 = 50)$
 - (a) Define crystal structure, crystal lattice and Bravais lattice.
 - (b) Explain lattice planes in crystal. Determine inter-planer spacing of a lattice plane in a simple cubic lattice with edge 2 A° which cuts the axis in intercepts ratio 3:4:5.
 - (c) What do you mean by polarization of substance? Write different mechanisms of polarization in a dielectric.
 - (d) Show that susceptibility of diamagnetic material is negative and independent of temperature.

www.f²irstRan ker.com

706/352/2480/62000

(e) FirstRanker.com Using Max wells, Firstings, derive electromagnetic.Fi wave equation ken comuum and prove that waker.com propagate with speed of light.

- (f) What is Poynting vector? A 500 watt lamp radiates power uniformly in all directions. Calculate the electric and magnetic field intensities at 1 m distance from the lamp.
- (g) How the temperature affects the critical field of a superconductor? The critical fields for lead are 1.8×106 A/m at 6 K and 2.4×106 A/m at 0 K. Find the critical temperature of the material.
- (h) What are carbon nanotubes? Discuss its properties and applications.

Section-C

Note : Attempt any two questions from this section. $(2 \times 15 = 30)$

- Q3. Explain the Braggs law. Describe Bragg's spectrometer and explain with example how it is used to study the crystal structure?
- Q4. (a) What is dielectric constant? Derive Clausius Mossotti equation for non polar solids having cubic structure.
 - (b) Explain the behavior of dielectric in an alternating electric field. What is relaxation time?

	www.f ^e irstRan	P.T.O.
706/ 352 /2480/62000	ker.com	

FirstRanker.com Define drift www.FirstRojlity and conductivity.FirstRojlity and conductivity.F

semiconductor. **Betacom** expression for the electric**ker**. conductivity of an intrinsic semiconductor.

(b) Determine the number density of a donar atoms which has to be added to an intrinsic germanium semiconductor to produce a n-type semiconductor of conductivity 5 ohm⁻¹ cm⁻¹, given that the mobility of electron in ntype germanium is 3900 cm²/(v - s). Neglect the contribution of holes to conductivity.