THEORY EXAMINATION (SEM-II) 2016-17
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
Time : 3 Hours
Max. Marks : 70
Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION-A

1. Attempt all questions :
a) Explain Pitfalls of floating-point Representation in detail.
b) Prove that $\Delta=\frac{1}{2} \delta^{2}+\delta \sqrt{1+\frac{\delta^{2}}{4}}$
c) Suppose 1.414 is used as an approximation to $\sqrt{2}$. Find the absolute and relative errors.
d) Write down Gauss's forward interpolation formula.
e) Prove that $x^{4}=\frac{1}{8}\left[3 T_{0}(x)+4 T_{2}(x)+T_{4}(x)\right]$
f) What do you mean by Histograms?
g) Explain Null hypothesis.

SECTION-B

2. Attempt any five of the following :

$$
7 \times 5=35
$$

a) Find a real root of the equation $3 x+\sin x-e^{x}=0$ by the method of Regula falsi position correct to four decimal places.
b) Find the missing term in the following table:

x	2	2.1	2.2	2.3	2.4	2.5	2.6
y	0.135	---	0.111	0.100	---	0.082	0.074

c) Given $y_{20}=24, y_{24}=32, y_{28}=35$ and $y_{32}=40$ find y_{25} by Bessel's interpolation formula.
d) Given $\frac{d y}{d x}=y-x, y(0)=2$. Find $y(0.1)$ and $y(0.2)$ correct to four decimal places using RungeKutta method.
e) By the method of least squares, find the curve $y=a x+b x^{2}$ that best fits the following data :

x	1	2	3	4	5
y	1.8	5.1	8.9	14.1	19.8

f) Apply Gauss-Seidel iteration method to solve the following equation (three iteration only)

$$
\begin{aligned}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

g) Find the cubic Lagrange's interpolating polynomial from the following data:

x	0	1	2	5
$f(x)$	2	3	12	147

h) For 10 observations on $\operatorname{price}(x)$ and supply (y), the following data were obtained (in appropriate
 Obtain the two lines of regression.

SECTION-C

Attempt any two of the following :

$10.5 \times 2=21$
3. Find $y(2)$ if $y(x)$ is the solution of $\frac{d y}{d x}=\frac{1}{2}(x+y)$ where $y(0)=2, y(0.5)=2.636, y(1)=$ $3.595, y(1.5)=4.968$ using Milne's method.
4. Given that $\frac{d y}{d x}=\log _{10}(x+y)$ with the initial condition that $y=1$ when $x=0$, find y for $\mathrm{x}=0.2$ and $x=0.5$ using Euler's modified formula.
5. Derive the Newton-divided difference formula, calculate the value of $f(6)$ from the following data

x	1	2	7	8
$f(x)$	1	5	5	4

