THEORY EXAMINATION (SEM-II) 2016-17
 ENGINEERING MATHEMATICS - II

Time : 3 Hours
Max. Marks: 100
Note : Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

1. Explain the following:
$10 \times 2=20$
(a) Show that the differential equation $y d x-2 x d y=0$ represents a family of parabolas.
(b) Classify the partial differential equation

$$
\left(1-x^{2}\right) \frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial y \partial x}+\left(1-y^{2}\right) \frac{\partial^{2} z}{\partial y^{2}}=2 z
$$

(c) Find the particular integral of $(D-\alpha)^{2} y=e^{\alpha x} f^{\prime \prime}(x)$.
(d) Write the Dirichlet's conditions for Fourier series.
(e) Prove that $\boldsymbol{J}_{\mathbf{0}}{ }_{0}(\boldsymbol{x})=-\boldsymbol{J}_{\mathbf{1}}(\boldsymbol{x})$.
(f) Prove that $\boldsymbol{L}\left[\boldsymbol{e}^{\boldsymbol{a t}} \boldsymbol{f}(\boldsymbol{t})\right]=\boldsymbol{F}(\boldsymbol{s}-\boldsymbol{a})$
(g) Find the Laplace transform of $f(t)=\frac{\sin a t}{t}$.
(h) Write one and two dimensional wave equations.
(i) Find the constant term when $f(x)=|x|$ is expanded in Fourier series in the interval (2, 2).
(j) Write the generating function for Legendre polynomial $P_{n}(x)$.

SECTION - B

2. Attempt any five of the following questions:
(a) Solve the differential equation

$$
\left(D^{2}+2 D+2\right) y=e^{-x} \sec ^{3} x, \quad \text { where } D=\frac{d}{d x}
$$

(b) Prove that $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$, where $P_{n}(x)$ is the Legendre's function.
(c) Find the series solution of the differential equation

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-(x+1) y=0 .
$$

(d) Using Laplace transform, solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}+9 y=\cos 2 t ; \quad y(0)=1, y\left(\frac{\pi}{2}\right)=-1 .
$$

(e) Obtain the Fourier series of the function,

$$
\begin{aligned}
& \mathrm{f}(\mathrm{t})=t, \quad-\pi<\mathrm{t}<0 \\
& =-t, \quad 0<\mathrm{t}<\pi .
\end{aligned}
$$

Hence, deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{8}$
(f) Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ under the conditions $u(0, y)=0$,

$$
u(l, y)=0, u(x, 0)=0 \text { and } u(x, a)=\sin \frac{n \pi x}{l}
$$

(g) Solve the partial differential equation:
$\left(D^{3}-4 D^{2} D^{\prime}+5 D D^{\prime 2}-2 D^{\prime 3}\right) z=e^{y+2 x}+\sqrt{y+x}$
(h) Using convolution theorem find $\mathrm{L}^{-1}\left[\frac{1}{(s+1)\left(\mathrm{s}^{2}+1\right)}\right]$

Attempt any two of the following questions:
3. (a) Solve the differential equation $\left(\mathrm{D}^{2}-2 \mathrm{D}+1\right) \mathrm{y}=\mathrm{e}^{\mathrm{x}} \sin x$
(b) Solve the equation by Laplace transform method:

$$
\frac{d y}{d t}+2 y+\int_{0}^{t} y d t=\sin t, \quad y(0)=1 .
$$

(c) Solve the partial differential equation

$$
\left(y^{2}+z^{2}\right) p-x y q+z x=0, \text { where } p=\frac{\partial z}{\partial x} \& q=\frac{\partial z}{\partial y}
$$

4. (a) Find the Laplace transform of $\frac{\cos \mathrm{at}-\cos \mathrm{bt}}{\mathrm{t}}$.
(b) Express $f(x)=4 x^{3}-2 x^{2}-3 x+8$ in terms of Legendre's polynomial.
(c) Expand $f(x)=2 x-1$ as a cosine series in $0<x<2$.
5. (a) Show that $J_{3}(x)=\left(\frac{8}{x^{2}}-1\right) J_{1}(x)-\frac{4}{x} J_{0}(x)$.
(b) Solve the $2 \frac{\partial z}{\partial x}+3 \frac{\partial z}{\partial y}+5 z=0 ; z(0, y)=2 e^{-y}$ by the method of separation of variables.
(c) A tightly stretched string with fixed end $x=0$ and $x=l$ is initially in a position given by $y=a \sin \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement $y(x, t)$.
