

Roll Www.FirstRanker.com www.FirstRankeY.com1

B.TECH.

THEORY EXAMINATION (SEM-II) 2016-17 ELECTRONICS ENGINEERING

Time: 3 Hours Max. Marks: 100

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

Explain the following:

 $10 \times 2 = 20$

- (a) Differentiate between N-type and P-type semiconductor.
- (b) Give all the Equivalent /Approximation circuits of a Diode.
- (c) Find the barrier potential of a silicon diode at junction temperature of 75oC and 10°C. Assume a barrier potential of 0.7 V at an ambient temperature of 25°C.
- (d) What is a Varactor Diode, give its application also.
- (e) What is Schottky Diode, give its application also.
- (f) Differentiate between Multi meter and CRO.
- (g) Determine B_{dc} and I_{CBO} , if $I_E = 5$ mA, $I_C = 4.95$ mA, $I_{CEO} = 200\mu$ A.
- (h) Differentiate between Depletion and Enhancement type MOSFET.
- (i) The Op-Amp has a Slew Rate of 10 V/μsec. What is the power bandwidth for a peak output voltage of 5 V.
- Define Modulation Index.

SECTION - B

Attempt any five of the following questions:

 $5 \times 10 = 50$

- (a) (i) Draw & explain the V-I characteristic of a P-N junction diode. Also describe the effect of temperature on the V-I characteristic of a P-N junction diode.
 - (ii) For a Zener Voltage regulator, determine the range of R_L and I_L that will result in V₀ being maintained at 10V. Given Vin = 50V, R = 1K Ω, IZM = 32mA.
- (b) (i) Differentiate between Clipper and Clamper circuit.
 - (ii) Explain the function of the circuit shown in Fig. 2b(ii). and draw the output waveform.
- (c) (i) Describe the construction of a NPN transistor. Define α and β with respect to BJT and derive the relationship between them.
 - (ii) Refer the information appearing in Fig. 2c(ii). Determine I_C, V_E, V_C, I_B, β & V_{CE}.

Fig. 2b(ii)

Fig. 2c(ii)

- (d) Explain the construction, working and characteristics of MOSFET.
- (e) (i) Draw the circuit of a subtractor circuit using op-amp and explain its working by

- Describe the working of Digital Voltmeter and Digital Multi Meter giving their block (f) diagram.
- Describe the working of CRO giving its block diagram (g)
- Describe communication system with the help of its block diagram. (h)

SECTION - C

Attempt any two of the following questions:

 $2 \times 15 = 30$

- List up the characteristics of an Op- amp. Also give its symbol and equivalent circuit. 3. For a particular Op-Amp the input offset current is 10 nA while input bias current is 40 nA. Calculate the values of two input bias currents.
 - In a full wave rectifier the load resistance is 2 K Ω , $r_f = 400 \Omega$. Voltage applied to each (b) diode is 240Sinot. Find
 - Peak value of current i.e. Im
- (ii) DC value of current i.e Idc
- (iii) RMS value of current i.e. Irms
- (iv) Efficiency

- Ripple Factor. (v)
- 4. Define the following: (a)
 - Slew Rate (i)
- (ii) Electron Volt
- (iii) Mobility
- (iv) Ripple Factor
- CMRR (v)
- Pinch Off Voltage (vi)
- T.U.F. (vi)
- What is modulation? Give the need of modulation. Differentiate AM & FM. (b)
- 5. Describe the working of voltage multiplier circuit. (a)
 - by ob Describe Amplitude Modulation by obtaining its expression. A 560 watt carrier is (b) modulated to a depth of 75%. Calculate the total power in the modulated wave.

