

Printed Pages: 6	260	EEC-304
(Following Paper ID and Roll No. to be filled in your Answer Book)		
Paper 1D : 131324	Roll No.	ПППП
	D DECIT	

в. тесн.

(SEM. III) THEORY EXAMINATION, 2015-16 FUNDAMENTALS OF NETWORK ANALYSIS AND

SYNTHESIS

[Time:3 hours] [Total Marks:100]

Section-A

- Attempt all parts. All parts carry equal marks. Write answer of each part in short: (2x10=20)
 - (a) Define 'initial value' and 'final value' theorem.
 - (b) Define reciprocal network.
 - (c) List three properties of positive real function.
 - (d) Enlist the two important properties to recognize an R-C impedance in synthesis.
 - (e) Explain an exponential function.

2200 (1) P.T.O.

www.FiretRanke

Ē

2200

2

EEC-304

2200

3

Figure.2

P.T.O.

 \mathfrak{S} Write the condition of symmetry in terms of Z, Y, h and T parameters.

Ų.

Determine the equivalent Norton Network at the terminals a and b of the circuit shown in figure-1.

- 3 Differentiate between active and passive filters.
- Show that the described by the transfer function

$$H(S) = \frac{1}{(s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)}$$
 is a Low Pass Filter.

Section-B

 $P(s) = s^3 + 3s^2 + 2s + K$

Note: Attempt any five questions from this section:

$$(10 \times 5 = 50)$$

5

Figure.1

position b. Find $i_L(t)$, $t \ge 0$ position a for $-\infty < t < 0$. At t = 0, it is connected to The switch K shown in figure-2 is in the steady state in

ò

Find

a

The r.m.s. value of the square-wave shown in figure-

œ

Synthesize an LC network terminated in 1Ω given that

The average power for the circuit having Zin=1.05-0.67 j Ω when the driving-current is 40-

9

Show that the voltage ratio transfer function of the ladder

 $Z_{21}(S) = \frac{1}{s^3 + 3s^2 + 4s + 2}$

network shown in figure-4 is given by

85°2

2200

£

EEC-304

2200

.7

6

- impedance function is given by $Z(S) = \frac{2s^5 + 12s^3 + 16s}{s^4 + 4s^2 + 3}$
- Synthesize a ladder network whose driving point is positive real or not.

Determine whether the function $F(S) = \frac{s^3 + 2s^2 + 3s + 1}{s^3 + s^2 + 2s + 1}$ Figure.3

 $\frac{V_2(S)}{V_1(S)} = \frac{8s^2}{12s^2 + 12s + 1}$

Section-C

Note: Attempt any two questions from this section. (15x2=30)

প্ত

P.T.O.

www.FirstRanke

 Express the impedance Z(s) for the network shown in figure-5 in the form:

$$Z(s) = K \frac{N(s)}{D(s)}$$

Plot its poles and zeros. From the pole-zero plot, what can you infer about the stability of the system?

- 11. Consider the system function $Z(s) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$.

 Synthesize:
 - (a) An R-L network
 - (b) An R-C network
- Find the poles of system functions for low pass filter with n=3 and n=4 Butterworth characteristics. (Do not use the tables).

2200

(6)

EEC-304