

Printed Pages: 6	260	EEC-304
(Following Paper I	D and Roll No. to be Answer Book)	filled in your
Paper ID : 131324	Roll No.	ПППП
	D TECH	

(SEM. III) THEORY EXAMINATION, 2015-16 **FUNDAMENTALS OF NETWORK ANALYSIS AND SYNTHESIS**

[Time:3 hours]

[Total Marks:100]

Section-A

- Attempt all parts. All parts carry equal marks. Write 1. answer of each part in short: (2x10=20)
 - Define 'initial value' and 'final value' theorem.
 - (b) Define reciprocal network.
 - List three properties of positive real function.
 - (d) Enlist the two important properties to recognize an R-C impedance in synthesis.
 - (e) Explain an exponential function.

2200

(1)

P.T.O.

2200

 $\overline{\mathcal{S}}$

EEC-304

www.FirstRanker.cc

- (f) Write the condition of symmetry in terms of Z, Y, h and T parameters.
- (g) Differentiate between active and passive filters.
- Show that the described by the transfer function

(E)

$$H(S) = \frac{1}{(s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)}$$
 is a

Low Pass Filter.

(i) Determine the range of constant 'K' for the polynomial to be Hurwitz

$$P(s) = s^3 + 3s^2 + 2s + K$$

(j) Write the properties of transfer functions.

Section-B

Note: Attempt any five questions from this section:

$$(10 \times 5 = 50)$$

5

· (3)

Figure.2

P.T.O.

3. Determine the equivalent Norton Network at the terminals a and b of the circuit shown in figure-1.

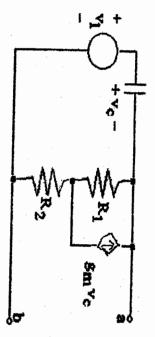



Figure.1

The switch K shown in figure-2 is in the steady state in position a for $-\infty < t < 0$. At t = 0, it is connected to position b. Find $i_L(t)$, $t \ge 0$

2200

4

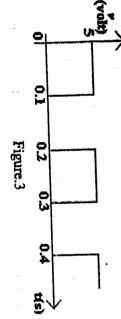
EEC-304

2200

Determine whether the function $F(S) = \frac{s^3 + 2s^2 + 3s + 1}{3}$

Synthesize a ladder network whose driving point

is positive real or not.


impedance function is given by $Z(S) = \frac{2s^5 + 12s^3 + 16s}{s}$

6

5. Find

(a) The r.m.s. value of the square-wave shown in figure-

<u></u> The average power for the circuit having Zin=1.05-0.67 j Ω when the driving-current is 40-

£ \ Figure.4) 14

প্ত

Note: Attempt any two questions from this section.

Section-C

(15x2=30)

P.T.O.

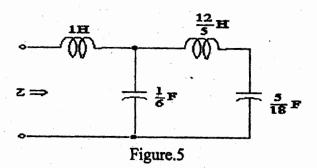
∞ Synthesize an LC network terminated in 1Ω given that

$$Z_{21}(S) = \frac{2}{s^3 + 3s^2 + 4s + 2}$$

network shown in figure-4 is given by Show that the voltage ratio transfer function of the ladder

9

 $\frac{V_2(S)}{V_1(S)} = \frac{8s^2}{12s^2 + 12s + 1}$


MMMFIRSTRANKE

10. Express the impedance Z(s) for the network shown in figure-5 in the form:

$$Z(s) = K \frac{N(s)}{D(s)}$$

Plot its poles and zeros. From the pole-zero plot, what can you infer about the stability of the system?

- 11. Consider the system function $Z(s) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$. Synthesize:
 - (a) An R-L network
 - (b) An R-C network
- 12. Find the poles of system functions for low pass filter with n=3 and n=4 Butterworth characteristics. (Do not use the tables)

---x---

2200

(6)

EEC-304