

Printed Pages : 5	616	NCS-303
(Following Paper	ID and Roll No. to Answer Book	o be filled in your
Paper ID :110303	Roll No.	

B.Tech.

(SEM. III) THEORY EXAMINATION, 2015-16 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

[Time:3 hours]

[Total Marks:100]

Section-A

- Attempt all parts. All parts carry equal marks. Write answer of each part in short. (10x2=20)
 - (a) Describe briefly the floating point representation of numbers.
 - (b) Suppose 1.414 is used as an approximation to √2. Find the absolute and relative errors.
 - (c) Express 2 T₀(x)-1/4 T₂(x)-1/8 T₄(x) as polynomials in x.
 - (d) Differentiate between ill conditioned and well conditioned methods.
 - (e) Explain underflow and overflow conditions of error in floating point's addition and subtraction.

17025

www.FirstRanke.

(1)

P.T.O.

respectively.

9

The numbers 0.01850×103 and 386755

....significant digits

six decimal places at x=1.

2.

students in Statistics:

The following table gives the marks obtained by 100

Attempt any five questions from this section.

(5×10=50)

Section-B

 Ξ

How can the rate of convergence of two methods

be compared, explain by taking an example?

3

Differentiate false position method and secant

3

round off error.

 \equiv

Find the number of terms of the exponential series

such that their sum gives the value of e' correct to

17025

2

NCS-303

_					-
08-07	60-70	90-60	40-50	30-40	Marks
7	11	22	35	25	Number of Students

_			_		-	
08-06	60-70	90-60	40-50	30-40	Marks	
7	11	22	35	25	Number of Students	

08.00	60-70	50-60	40-50	30-40	Marks	
7	11	n	35	25	Number of Students	

17025

P.T.O.

3

Write differnce between the truncation error and students who got more than 55 marks. Use Newton's forward formula to find the number of

elimination method: Solve the following system of equation by Gauss

ىي

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 10$$

$$7x_1 + 10x_2 + 5x_3 + 2x_4 = 40$$

$$13x_1 + 6x_2 + 2x_3 - 3x_4 = 34$$

$$+6x_2 + 2x_3 - 3x_4 = 34$$

 $+14x_3 + 8x_3 - x_4 = 64$

$$11_{11} + 14x_2 + 8x_3 - x_4 = 64$$

The speed v meters per second of a car, I seconds after its starts, is shown in following table:

120	108	96	84	72	60	4.8	36	24	12	0	1
9.00	5.40	4.50	5.40	10.26	1854	21.6	18.9	10.08	3.6	0	, A

www.FirstRanke.

the car in 2 minutes. Using Simpson's 1/3rd rule find the distance traveled by

•	_	7		
٦	٠,	4	ı	
ø	-	۹	1	

025

4

Ş.

A real root of the equation $f(x) = x^3 - 5x + 1 = 0$, lies in the interval (0,1). Perform four iterations of the secant method.

7

- Evaluate the intergral I=dx/(x2+1) in the interval [0,1] using the Lobatto and Radau 3 point formula.
- Find the value of integral, using Gauss-Legendre three point integration rule.

9

$$I = \int_{2}^{3} \frac{\cos 2x}{1 + \sin x} dx$$

NCS-303

Section-C

Attempt any two questions from this section. (15×2=30)

- Using Gram-Schmidt orthogonalization process, compute the first three orthogonal polynomials P₀(X), P₁(X), P₂(X) which are orthogonal on interval [0,1] w.r.t. weight function W (x)=1. Using these polynomials obtain least square approximation of first degree for f(x)=x^{1/6} on interval [0, 1].
- Fit a natural cubic Spline to every subinterval for the following data.

3	2	1	0	×	
2	å	-6	2	У	

Hence compute: y (2.5)

12.

(a) Apply Milne's predictor-corrector method, find y
 (0.8) if y (x) is the solution of dy/dx=1+y2. Given y(0)=0, y (0.2) =0.2027, y(0.4) =0.4228 and y
 (0.6) = 0.6841.

www.FirstRanke.

Apply Runge kutta fourth order method to find y (0.1) for the initial value problem, dy/dx=y-x Given y(0)=2.

9

17025

(5)

NCS-303