

Printed Pages: 4	449	NEC-302
(Following Paper ID and Roll No. to be filled in your Answer Book)		
Paper ID :131302	Roll No.	

B.Tech.

(SEM. III) THEORY EXAMINATION. 2015-16 FUNDAMENTAL OF ELECTRONIC DEVICES

[Time:3 hours]

[Total Marks: 100]

Section-A

- 1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(10\times2=20)$
 - (a) Differentiate Zener and avalanche mechanism on the basis of doping, voltage and required depletion region width and ionization effect.
 - (b) Si sample is doped with 10^{20} As atoms/cm³. What is equilibrium concentration of holes at 300 K? Where is E_i relative to E_i ? Draw the energy band diagram to show the position of E_i and E_r . Take $n_i = 1.5 \times 10^{10}$ cm⁻³.
 - (c) What is indirect band gap semiconductors.
 - (d) What is lattice scattering.

10000

(1)

P.T.O

2

4.

- E **(8)** $\widehat{\Xi}$ <u>e</u> What is superiority of metal semiconductor diode How high electron mobility channel is created in HEMT?
 - State the principle of Invariance of Fermi level. from Hall effect. Which semiconductor parameters are measured

S

A semiconductor sample is exposed to a photonic

- Why 3rd quadrant is preferred for photo detectors? over conventional diode?
- What is figure of merit of photodiode?

 \subseteq

 Ξ

Section-B

Attempt any five questions from this section: (5x10=50)

Calculate packing fraction and formation (with FCC) of Si-unit cell. Also describe the energy band splitting in Si crystal formation.

distribution function for semiconductor materials. Discuss the temperature dependence of Fermi-Dirac electron. Derive the thermal equilibrium concentration of

 ω

equation resulting due to this phenomenon. Also, derive Describe diffusion of carriers and derive the current the Einstein relation.

2

NEC-302

10000

 \mathfrak{S}

P.T.O.

6. cm⁻³. Calculate $V_0 Q^+$, E_0 and depletion region extension cm⁻³, $\varepsilon_r = 11.8$, $\varepsilon_0 = 8.85 \times 10^{-14}$ F/cm and KT=0.0259 on either side of junction at RT. (Given n=1.5×1010 acceptor concentration in p-type region is N₈=4×10¹⁸ square cross section with area=2×10⁻³ cm². Assume Si sample ($N_d = 10^{16}$ cm⁻³), forming an abrupt junction of excess carrier and life time of carrier if the excitation excitation for a long time(t<0). Under low level homojunction diode. Boron is implanted into an n-type Derive the expression of contact potential for PN is removed at t=0. injection, derive the equation governing the decay of

enhancement MOSFET. Draw is physical structure and Describe in detail the operation of n-channel I-V characteristic

.7

eV at RT).

With the help of neat diagram describe the operation of Impact ionization avalanche transit time diode

œ

of semiconductor LASER. Deduce the conditions of lasing. Describe the operation

9.

MMNKIRSIRSINKE

Section-C

Attempt any two question in this section: $(2 \times 15 = 30)$

- 10. Mention ideally desired characteristics of (parameters) area, doping, lifetime and width of base region in BJT. With the help of neat diagram showing the various current components of a PNP BJT, describe emitter injection efficiency, base transport factor and collector to base amplification ratio. Describe how the base current controls the operation of BJT.
- 11. Derive the ideal diode equation. Discuss the majority carrier flow mechanism in neutral regions.
- 12. With the help two transistor analogy explain the operation of PNPN diode. Also describe various turn-on mechanisms used in SCR.

10000

(4)

NEC-302