Printed Pages: 7 (Following Paper ID and Roll No. to be filled in your Paper ID: 2289953 Answer Books) Roll No. NCS - 303

B.TECH

Regular Theory Examination (Odd Sem-III) 2016-17

COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Max. Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

Section - A

Attempt all questions in brief.

(10×2=20)

Discuss the significant digits with suitable example.

should the diameter be measured? is not allowed to exceed 0.1%. How accurately The error in the measurement of the area of a circle

Define testing of Statistical hypothesis

c

303/12/2016/15680

3

[P.T.O.

www.FirstRanke.

Ð

B

Write a short note on floating point arithmetic

c

What is the condition of natural spline.



303/12/2016/15680

2

303/12/2016/15680

3

[P.T.O.

2.

æ

 $(3 \times 10 = 30)$ 

<u>e</u>

Attempt three questions from this section Section - B

Use synthetic division and perform two interations positive root of the equation for the Birge-Vieta method to find the smallest

NCS - 303

Express  $1+x-x^2+x^3$  as sum of Chebyshev polynomial.

٩

Write the normal equation for a  $y = a + bx + cx^2$ 

ತ Prove that  $\mu \delta = \frac{1}{2} (\Delta + \nabla) = \frac{\Delta E^{-1}}{2} + \frac{\Delta}{2}$ 

Determine the condition number of the matrix

ت

l using the maximum absolute row sum

Differentiate between ill conditioned and well conditioned methods.

approximation.

NCS - 303

approximation  $P_0 = 0.5$ .  $x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$ . Use the initial

Write down the computer algorithms of least square

9

error bound also. rule. If  $I = \int e^{-x^2} dx$ , then estimate I using the Trapezoidal rule with the 10 subintervals. Find an Derive the formula for error analysis of trapezoidal

Use Gauss-Elimination method to solve the following system of equations:

٩

x+4y+9z=163x + 2y + 3z = 182x + y + z = 10

www.FirstRanke.

Use secant method to determine the root of the equation  $\cos x - xe^x = 0$ . Choose suitable initial

303/12/2016/15680

£

303/12/2016/15680

(5)

NCS - 303

9

## Attempt any one part of the following: (1×10=10)

'n

- method, the real root of the equation interation method. Find by fixed point iteration Find the condition for convergence of fixed point  $\sin x = 10(x-1).$
- 9 method. Also show how the rate of convergence of places using Aitken's ∆2 method and iteration equation  $2x - \log_{10} x = 7$ , correct to three decimal Define Aitken's \( \Delta^2 \) method. Find a real root of the Aitken's  $\Delta^2$  method is rapid than iteration method
- Attempt any one part of the following: (1×10=10)
- <u>a</u>) truncation error of the quadratic interpolation is less in the tabulation of  $f(x) = \sin x$  in the interval formula. Determine the step size that can be used Write the algorithm for Lagrange's interpolation  $[0, \pi/4]$  at equally spaced nodal points so that the

Attempt any one part of the following: (1×10=10)

of the degree 2 to the function  $1/(1+x^2)$  in the

principle of least squares in the form of a polynomial Obtain an approximation in the sense of the

range  $-1 \le x \le 1$ .

- S(h). Give the error estimate (the values in the table the table below and with the aid of the approximation are correctly rounded.) Calculate y'(0.398) as accurately as possible using
- 0.398 0.399 0.400 0.401 0.402

×

f(x): 0.408591 0.409671 0.410752 0.411834 0.412915

Find a quadrature formula

exact for polynomials of highest possible degree.  $\int_{0}^{\infty} \frac{f(x)dx}{\sqrt{x(1-x)}} = \alpha_1 f(0) + \alpha_2 f\left(\frac{1}{2}\right) + \alpha_3 f(1) \text{ which is}$ 

with the exact value. Then use the formula on  $\int_0^1 \sqrt{x-x^3}$  and compare

www.FirstRanke.



303/12/2016/15680

6

303/12/2016/15680

3

-x+10y-2z=7-x-y+10z=810x-2y-2z=6 ङ

Solve by successive over relaxation method, the

with y(0) = 1

value of y for x = 0.2 and x = 0.4 if  $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ 

Apply Runge-Kutta method to find an approximate

Evaluate

Attempt any one part of the following: (1×10=10)

 $I = \int_{0}^{\infty} \frac{1}{2x^2 + 2x + 1}$ , using the Lobatto 3 point and

Radau 3-point formula. Compare with the exact

ভ A random sample of 900 members has a mean cms and S.D. 2.3 cms. 3.4 cms. Can it be reasonably regarded as a sample from a large population of mean 3.2

NCS - 303

≝

NCS - 303

Attempt any one part of the following:  $(1\times10=10)$ 

 $\varepsilon = 0.02$ Find a uniform polynomial approximation of degree four or less to ex on [-1, 1] using Lanczos economization with a tolerance of

www.FirstRanke.