

Printed 1	Pages: 6	4	-		AS-303
(Follow	ing Paper II	Answer		e filled i	n your
Paper ID	:199312	Roll No		П	
		B.Tech.			
(SE	M. III) THE	DRY EXAM	MINATIO	N, 2015	-16
	MA	THEMAT	ICS-III		
[Time:3 l	hours]		.[Maxin	numMai	rks:100]
	empt all ques				dicated.
:		Section-	A		
1. Atte	mpt all parts	of this section	on. Each p	art carry	2 marks.
				(2)	×10=20)
(a)	Show that through an direction.				
(b)	Determine	and class	ify all th	e singul	arity of
	$\frac{1}{z(z-2)^5} +$	$\frac{1}{(z-2)^z}.$			
3800		(1)			P.T.O

www.FirstRanke.

3800

AS-303

3800

2

<u></u> Define Fourier Transform of a function f(x).

Find the Z- Transform of {(-1)*}.

Define Probability density function.

<u>@</u>

What is Karl Pearson's coefficient of skewness.

æ

In a normal distribution, 31% of the items are

under 45 and 8% are over 64. Find the mean and

3

Ξ <u>@</u> Show that $\nabla - \Delta = -\nabla \Delta$.

Ξ Define Bisection method. What is cubic spline?

Find missing value in following table:

ਭ

9

,	2		з	_
60 64	55	8	\$	×

Section-B

Attempt any five questions from this section. $(5 \times 10 = 50)$

a Show that the function defined by $f(x) = \sqrt{|xy|}$ is not regular at origin, although Cauchy-Riemann equations are satisfied.

3 Determine the analytic function f(z) = u + iv, in terms of z, whose $u-v=e^x(\cos y-\sin y)$.

> <u>a</u> Find inverse Z-Transform of $(z-5)^{-3}$, when z > 5

Ų.

Solve the following difference equation using Ztransform $u_{n+2}+2u_{n+1}+u_n=n, u_0=u_1=0.$

3

that if $f(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{1}{2}x^{2}} dx$, when of

standard deviation of the distribution. It is given

(0.5)=0.19, and f (1.4)=0.42

many bombs are required to be dropped to give a needed to destory the targey completely. How any bomb will strike the target. Two direct hits are In a bombing action, there is a 50% chance that 99% chance of better of completely destroying the www.FirstRanke.

(a) Find to four places of decimal, the smallest root (b) From the following table find the value of $e^{0.24}$ the equation $e^{-x} = \sin x$.

5.

1.10517 12214 1.34986 1.49182 1.64872

P.T.O.

ω

Ś	33				
•	36			ı	
	00	v	H	,	

£

AS-303

3800

(5)

6 (a) The distance covered an athlete for the 50 meter race is given as:

Determine speed of the athlete at t=5 sec correct to two decimal.	Distance (meter)	lime (sec)
ecir	0	c
speed nal.	2.5	-
of th	8.5	2
e athle	0 2.5 8.5 15.5 24.5 36.5	u
te at t	24.5	4
=5 sec	36.5	v
сопте	S	σ
-8		

- 3 Evaluate $\int_{1+x^2}^1 dx$ using Simpson's 3/8th rule, by taking h=1/6.
- æ Evaluate using Cauchy intergral formula $\begin{cases} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} & \text{dz, where C is the circle } |z| = 4. \end{cases}$

7.

(b) Find the Fourier Sine transform of

$$f(x) = e^{-x}$$
, for $x \ge 0$ and $a > 0$.

hence show that,

$$\int_0^\infty \frac{a \sin ax}{a^x + a^x} da = \frac{\pi e^{-ax}}{2}$$

â Six coins are tossed 6400 times. Using the Poisson six heads x times. distribution, determine the probability of getting

œ

Using Newton's divided difference formula find a polynomial which takes the values 3, 12, 15, -21 when x has the values 3, 2, 1 and -1 respectively.

3

(a) using Milne's method, solve $\frac{dy}{dx} = 1 + y^2$ with initial

conditions.

Find the value of y (0.6) by Ranga Kutta fourth (0.6)=0.6841, find y(0.8). y(0)=0, y(0.2)=0.2027, y(0.4)=0.4228, order method taking h=0.2 for the initial value www.FirstRanke

3

problem:

Attempt any two parts of this Section.

(a) Apply calculus of residues to evaluate.

0.

(15x2=30)

 $\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx, a > 0.$

P.TO

(b) Solve the equation. $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial t^2}, x > 0, t > 0$

Subject to the conditions:

- (i) y = 0 when x = 0, (ii) $f(x) = \begin{cases} 1, 0 < x < 1 \\ 0, x > 1 \end{cases}$ (iii) u(x,t) is bounded.
- (c) The first four moments about working mean 28.5 of a distribution are 0.294, 7.144, 42.409, and 454.98. Calculate the moments about mean. Also calculate β₁ and β₂ and comment upon the skewness and kurtosis of the distribution.
- (d) Use Gauss-Seidal method to solve the following equations,

$$2x+10y+z = 51$$

$$10x+y+2z = 44$$

$$x+2y+10z = 61$$

-×-

3800

(6)

www.FiretRanke

AS-303

