Printed Pages: 6	4		AS-303	
(Following Paper ID and Roll No. to be filled in your Answer Book)				
Paper ID :199312	Roll No.	ШТ		
	B.Tech.			

(SEM. III) THEORY EXAMINATION, 2015-16 MATHEMATICS-III

[Time:3 hours] [MaximumMarks:100]

Note: Attempt all questions from each Section as indicated.

Section-A

The symbols have their usual meaning.

1. Attempt all parts of this section. Each part carry 2 marks.

 $(2 \times 10 = 20)$

- (a) Show that w=iz is the rotation of the z-plane through an angle $\pi/2$ in the counterclockwise direction.
- (b) Determine and classify all the singularity of

$$\frac{1}{z(z-2)^5} + \frac{1}{(z-2)^2}.$$

3800 (1) P.T.O

3800

AS-303

2

- <u></u> Define Fourier Transform of a function f(x).
- <u>a</u> Find the Z- Transform of $\{(-1)^n\}$.
- <u>@</u> Define Probability density function.
- Show that $\nabla \Delta = -\nabla \Delta$.

8

 $\widehat{\mathfrak{S}}$

What is Karl Pearson's coefficient of skewness

Define Bisection method.

 Ξ

What is cubic spline?

 Ξ

Find missing value in following table:

ਭ

(0.5)=0.19, and f(1.4)=0.42.

 \odot

۲	×
3	45
•	50
2	55
•	60
-2.4	64

Section-B

Attempt any five questions from this section. $(5 \times 10 = 50)$

(a) Show that the function defined by $f(x) = \sqrt{|xy|}$ is equations are satisfied not regular at origin, although Cauchy-Riemann

2

Determine the analytic function f(z) = u+iv, in terms of z, whose $u-v=e^x(\cos y-\sin y)$.

- ယ (a) Find inverse Z-Transform of $(z-5)^{-3}$, when z > 5
- ਭ Solve the following difference equation using Ztransform $u_{n+2}+2u_{n+1}+u_n=n, u_0=u_1=0.$
- (a) In a normal distribution, 31% of the items are that if $f(t) = \frac{1}{\sqrt{2\pi}} \int_0^t e^{-\frac{1}{2}x^2} dx$, when of standard deviation of the distribution. It is given under 45 and 8% are over 64. Find the mean and
- In a bombing action, there is a 50% chance that 99% chance of better of completely destroying the many bombs are required to be dropped to give a needed to destory the targey completely. How any bomb will strike the target. Two direct hits are
- (a) the equation $e^{-x} = \sin x$. Find to four places of decimal, the smallest root

S

- (b) From the following table find the value of $e^{0.24}$.
- 1.10517 1.2214 0.2 1.34986 1.49182 1.64872 0.5

 \mathfrak{S}

3800

P.T.O.

3800

4

AS-303

3800

FirstRan	ker.
Firstranker's cho	oice

6 (a) The distance covered an athlete for the 50 meter race is given as:

	Distance (meter)	Time (sec)
	0	0
	2.5	1
	8.5	2
	15.5	3
-	24.5	4
	36.5	5
	50	6

3

Using Newton's divided difference formula find a

to two decimal. Determine speed of the athlete at t=5 sec correct

- (b) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's 3/8th rule, by taking h=1/6.
- **a** Evaluate using Cauchy intergral formula. $\frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)}$ dz, where C is the circle |z| = 4.

7.

(b) Find the Fourier Sine transform of:

$$f(x) = e^{-ax}$$
, for $x \ge 0$ and $a > 0$.

hence show that,

$$\int_0^\infty \frac{a \sin ax}{a^z + a^z} da = \frac{\pi e^{-ax}}{2}$$

œ

polynomial which takes the values 3, 12, 15, -21 when x has the values 3, 2, 1 and -1 respectively.

(a) using Milne's method, solve $\frac{dy}{dx} = 1 + y^2$ with initial conditions.

9

y(0)=0, y(0.2)=0.2027, y(0.4)=0.4228, (0.6)=0.6841, find y(0.8).

Find the value of y (0.6) by Ranga Kutta fourth order method taking h=0.2 for the initial value problem:.

Section-C

10. Attempt any two parts of this Section. (15x2=30)

MANIFIESE

(a) Apply calculus of residues to evaluate.

$$\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx, a > 0.$$

P.TO

5

(b) Solve the equation. $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial t^2}, x > 0, t > 0$

Subject to the conditions:

- (i) y = 0 when x = 0, (ii) $f(x) = \begin{cases} 1, 0 < x < 1 \\ 0, x > 1 \end{cases}$ (iii) u(x,t) is bounded.
- (c) The first four moments about working mean 28.5 of a distribution are 0.294, 7.144, 42.409, and 454.98. Calculate the moments about mean. Also calculate β_1 and β_2 and comment upon the skewness and kurtosis of the distribution.
- (d) Use Gauss-Seidal method to solve the following equations,

$$2x+10y+z = 51$$
$$10x+y+2z = 44$$
$$x+2y+10z = 61$$

3800

(6)

AS-303