Printed Pages: 4 (Following Paper ID and Roll No. to be filled in your Paper ID: 2289467 **Answer Books)** Roll No. **NEC-303**

B.TECH.

Regular Theory Examination (Odd Sem - III), 2016-17 SIGNAL & SYSTEM

Time: 3 Hours

Max. Marks: 100

SECTION-A

answer of each part in short. Attempt all parts. All parts carry equal marks. Write (10×2=20)

Verify whether the given system described by the Find the fundamental period of the given signal equation is linear and time-invariant. $x(t) = t^2$

What is the relationship between Z transform and $x(n) = \sin\left(\frac{6\pi n}{7} + 1\right)$

Find the fourier transform of

State convolution property of Z transform.

Fourier transform.

 $x(t) = \sin(\omega t)\cos(\omega t)$.

303/12/2016/6700

[P.T.O.

MANIFIELL

b

- J
- 9 Differentiate between CTFT & DTFT.
- Obtain the convolution of x(t) = u(t) and h(t) = 1 for $-1 \le t \le 1$
- given signal. $x(t) = e^{(-t)} u(t)$ Determine the auto-correlation function of the
- Write the S domain transfer function of a first order What are the necessary conditions for an LTI system to be stable?

SECTION-B

Attempt any five questions from this section (5×10=50)

ড

- System is stable
- System is non causal
- with ROC
- i) u[n]

 \mathfrak{S}

303/12/2016/6700

- ii) -u[-n-1]

Note:

 \mathbf{e} of x(t) and y(t) using Fourier transform. Given $x(t) = 5 \cos t$, $y(t) = 2e^{-t}$, find the convolution

If $X(s) = \frac{2s+3}{(s+1)(s+2)}$ find x(t) for

- System is causal

င

- Determine the z-transform of following sequences

- iii) $x[n] = a^n u[n] b^n u[-n-1]$

303/12/2016/6700

 \mathfrak{S}

d) Define invertible system and state whether the following systems are invertible or not

NEC - 303

- i) y(n) = x(n)
- ii) $y(n) = x^2(n)+1$.

ဇ

- phase response. BW of B Hz centered out fo. Hazand having a linear an ideal BPF with passband gain of N and passband Determine the impulse response function h(t) of
- A discrete time system is given as or unstable. initially relaxed: Check whether the system is stable is applied to the system. Assume that the system is $y(n) = y^2(n-1)+x(n)$. A bounded input of x(n) = 2n
- Differentiate between the fellowing:

9

Continuous time signal and discrete time signal.

MANN FIRSTRANKE

- ii) Periodic and aperiodic signals
- iii) Deterministic and random signals
- Show then $X_3(W) = aX_1(\omega) + bX_2(\omega)$ that if $x_3(t) = ax_1(t) + bx_2(t)$

Þ

SECTION-C

Note: Attempt any two Questions from this section. (2×15=30)

The accumulator is excited by the sequence $x[n] = nu[\dot{n}]$.

Accumulator can be defined by following input and output relationship.

$$y[n] = \sum_{k=-\infty}^{n} x(n)$$

Determine its output under the condition:

- i) It is initially relaxed
- State and prove initial and final value theorem for z transform. ii) Initially y(-1) = 1
- If Laplace transform of x(t) is $\frac{(s+2)}{(s^2+4s+5)}$ Determine Laplace y(t) = x(2t-I)u(2t-I)transform of

Ņ

Use the convolution theorem to find the Laplace transform of

ত

£