Printed Pages: 7 (Following Paper ID and Roll No. to be filled in your Paper ID: 2289954 **Answer Books)** Roll No. **NEC - 309**

B.TECH.

Regular Theory Examination (Odd Sem - III),2016-17

DIGITAL LOGIC DESIGN

Time: 3 Hours Max. Marks: 100

choose suitably. Note: Attempt All sections. If require any missing data: then

Section - A

Attempt all questions in brief.

 $(10 \times 2 = 20)$

Perform 2's complement subtraction of 010110-100101.

What is the feature of gray code?

চ

င

- diagram for a 4 to 1 mux. Write the logic equation and draw the internal logic
- What is a priority encoder?

<u>a</u>

List the major differences between PLA and PAL.

<u>e</u>

309/12/2016/15680

 Ξ

[P.T.O.

MANN FIRSTRANKE

Ð Define a Bus. What are the different types of buses? **NEC - 309**

- 8 Give the comparison between combinational circuits and sequential circuits.
- þ What are the different types of flip-flop?
- <u>=</u>: Give the comparison between synchronous & asynchronous sequential circuits.
- <u>"</u> When does race condition occur?

Section - B

Attempt any three of the following:

'n

 \boldsymbol{e}

- Reduce the Boolean function using k-map technique and implement using gates
- ত

i)
$$f_1 = \sum m(1,2,3,5,7)$$

309/12/2016/15680

 \mathcal{O}

 $(3\times10=30)$

don't cares condition $d(w, x, y, z) = \sum m(2, 11)$ $f(w,x,y,z) = \sum m(0,1,4,8,9,10)$ which has the

Implement the following multiple output combinational logic circuit using a 3 to 8 decoder.

$$f_1 = \sum m(1,2,3,5,7)$$

Attempt any one part of the following $(1\times10=10)$

Detect and correct error (if any) in the following received even parity Hamming code word 00111101010.

<u>B</u>

Minimize the given Boolean function using Quine Mc Clusky method implement the simplified function using NOR gates $f(A,B,C,D) = \sum_{m} m(0,1,2,4,5,8,9,11,15)$ and

ত

309/12/2016/15680

 \mathfrak{S}

[P.T.O.

NEC - 309

ii) $f_2 = \sum m(0,3,6)$

iii)
$$f_3 = \sum m(0,2,4,6)$$

င in detail. What is Ram? Explain the different types of RAM

<u>a</u> Realize

A JK flip flop using SR flip flop.

A SR flip flop using NAND gates and explain its operation.

Section - C

WAN LIEST STATE

<u>b</u>

4 Attempt any one part of the following $(1\times10=10)$

NEC - 309

aObtain the simplified Boolean expression for variables in the circuit of fig. 1 the output F and G in terms of the input

Fig. J

=: using decoder. Implement the full adder and full subtractor

output indicates whether A>B, A=B, A<B. the magnitude of two 3 bit numbers and its Design a combinational circuit that compares

Ξ: Construct a BCD to excess 3 code converter change the circuit to an excess 3 to BCD code with a 4 bit adder. What must be done to converter?

Fig. 2

309/12/2016/15680

5

309/12/2016/15680

4

NEC-309

Ş Attempt any one part of the following $(1\times10=10)$

binary number equal to the square of the input circuit accepts a three-bit number and outputs a Design a combinational circuit using a ROM. The

a)

b Draw a PLA circuit to implement the functions

$$f_1 = A'B + AC' + A'BC', f_2 = (AC + AB + BC)', f_3 = BC + AC + A'BC'$$

Attempt any one part of the following $(1\times10=10)$

6.

a)

one input x in and one output y out. The state diagram A sequential circuit has three flip flop A,B and C; treating the unused states as don't-care conditions is shown in fig2. The circuit is to be designed by Use T flip flop in the design.

MANN FIRSTRAINKE

[P.T.O.

.7

309/12/2016/15680

6

<u>5</u> flips flop. Design a 4 bit binary synchronous counter with D

Attempt any one part of the following $(1 \times 10 = 10)$

a sequence of internal states Y_1Y_2 for the following sequence of input X_1X_2 : 00,10;,11,01,11,10,00. sequential circuit shown in fig.3 determine the Derive the transition table for the asynchronous

ত the excitation function An asynchronous sequential circuit is described by

Fig. 3

NEC - 309

 $Y = x_1 x_2' + (x_1 + x_2')y$ and z = y

NEC-309

<u>:</u> Draw the logic diagram of the circuit

Ξ: Drive the transition table and output map.

www.FilestRanker