Paper 1D: 2012250	(Following Paper ID	Printed Pages - 7
Roll No.	(Following Paper ID and Roll No. to be filled in your Answer Books)	NME - 30

B.TECH.

Regular Theory Examination (Odd Sem - III), 2016-17

THERMODYNAMICS

Time: 3 Hours

Max. Marks: 100

SECTION-A

Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(10 \times 2 = 20)$

can be used for measurement of temperature. List any five physical properties of matter which

a

How does a homogeneous system differ from a heterogeneous system?

চ

င Write Boyle's law and Charle's Law.

303/12/2016/13800

 Ξ

[P.T.O.

WMM.FirstRanke.

- www.FirstRanker.com
 - <u>a</u> State Carnot theorem.

NME - 303

- ဇ Compare heat pump and refrigerator.
- t) State third law of thermodynamics.
- 9 a flow process? Justify. Is the availability function same for a non-flow and
- Þ What advantages are obtained if superheated steam is used in steam prime movers.?

ယ

- <u>...</u> Define dryness fraction of steam.
- Define brake power in an IC Engine.

SECTION - B

Attempt any 5 questions from this section. (5×10=50)

, kW. The enthalpies of gases at the inlet and outlet are In a gas turbine unit, the gases flow through the turbine is 15 kg/s and the power developed by the turbine is 12000

303/12/2016/13800

2

NME - 303

of gases at the inlet and outlet are 50 m/s and 110 m/s respectively. Calculate: 1260 kJ/kg and 400 kJ/kg respectively, and the velocity

The rate at which heat is rejected to the turbine, and

volume of the gases at the inlet is 0.45 m³/kg. The area of the inlet pipe given that the specific

Ξ

- at constant temperature to its original state 1. Find the 7.5 bar, index of compression being 1.2. It is then cooled state 1 is compressed polytropically to state 2 at pressure 3 kg of air at 1.5 bar pressure and 77°c temperature at net work done and heat transferred.
- system. Explain the entropy principle and apply it to a closed

MMM.FirstRanke

which is 100 kPa, 5°C. For this process determine. temperature becomes equal to that of the surroundings closed system until its volume is doubled and its Two kg of air at 500 kPa, 80°C expands adiabatically in a

S

303/12/2016/13800

 \mathfrak{S}

[P.T.O.

303/12/2016/13800

4

a) The maximum work

NME - 303

- <u>ড</u> The change in availability
- င The irreversibility
- 9 Show that violation of Kelvin Planck statement of second statement. law of thermodynamics implies a violation of Clausius
- .7 various regions of the diagram in details? Draw the p-T diagram of pure substance and explain its
- œ turbine upon Rankine cycle performance. temperature at inlet to turbine and pressure at exit from Discuss the effect of pressure of steam at inlet to turbine,
- 9 Explain the following:
- <u>a</u> Brake specific fuel consumption,
- ঙ Brake mean effective pressure,

303/12/2016/13800

3

[P.T.O.

င Mechanical efficiency,

NME - 303

- ٩ Brake thermal efficiency,
- ၜ Indicated thermal efficiency.

SECTION - C

Attempt any 2 questions from this section

 $(2 \times 15 = 30)$

10. a) Compare SI engines with CI engines

®

MANN FIRSTRANKE

system. Define a thermodynamic system. Differentiate between open system, closed system and an isolated

ভ

compressor. Derive the steady flow energy equation applied to

11. a)

12.

303/12/2016/13800

9

303/12/2016/13800

3

[P.T.O.

b) Throttling calorimeter has steam entering to it at 10MPa and coming out of it at 0.05 MPa and 100°C.

Determine dryness fraction of steam. (8)

NME - 303

NME - 303

Three reversible engines of Carnot type are operating in series as shown between the limiting temperatures of 1100 K and 300 K. Determine the intermediate temperatures if the work output from engines is in proportion of 3:2:1.

www.kitesthauke.