

Printed pages: 02 Roll No. www.FirstRanker.com Sub Code: RAS 301

Paper ID: 9 0 1 9

B.Tech. (SEM III) THEORY EXAMINATION 2017-18 Mathematics -III

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

Any special paper specific instruction.

SECTION A

Attempt all questions in brief.

 $2 \times 7 = 14$

- Define analytic function with an example.
- Define the Binomial distribution with mean and variance.
- c. Write the normal equation for the curve $y = \frac{a}{x} + bx$
- d. Give comparison between Regulafalsi method and Newton Raphson method
- e. Write the relation between nth divided difference and nth forward difference.
- f. What do you mean by initial value problem
- g. Find $Z^{-1}\left(\frac{5}{5z-1}\right)$

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

- Give an example of a function in which Cauchy Riemann Equations are satisfied yet the function is not analytic at the origin. Justify your answer.
- Find the measure of Sskewness and kutosis based on moments for the followi distribution and draw your conclusion

Marks	5-15	15-25	25-35	35-45	45-55	
No.ofstudents	70	3	5	7	4	

c. Decompose
$$A = \begin{bmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix}$$
 in the form LU, where L is lower

triangular matrix and U is upper triangular matrix and hence solve the system of equations:

$$5x - 2y + z = 4$$

 $7x + y - 5z = 8$
 $3x + 7y + 4z = 10$

d. Express the function
$$f(x) = \begin{cases} 1 & when |x| \le 1 \\ 0 & when |x| > 1 \end{cases}$$
 as a Fourier Integral. Hence evaluate $\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$.

e. Given the initial value problem $\frac{dy}{dx} = x^3 - y^3$, y(0) = 1. Find the numerical solution of differential equation at x = 0.6 with y = 0.2 by using Runge-Kutta method of Fourth order.

www.FirstRanker.com

www.FirstRanker.com

SECTION C

3. Attempt any one part of the following: $7 \times 1 = 7$

- Evaluate the integration: $\int_0^{\pi} \sin^4 \theta d\theta$.
- State and prove the Cauchy Integral formula. Also evaluate $\int_C \frac{1}{(z^2+4)^2} dz = \frac{\pi}{16}$ " where C is the circle |z - i| = 2,
- 4. Attempt any one part of the following:

 $7 \times 1 = 7$

- Find Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find Fourier sine transform of (b) Find the inverse Z-transform of F(z), where F(z) is given by

(i)
$$\frac{z}{(z+2)(z+3)}$$
 (ii) $\frac{7z-11z^2}{(z-1)(z-2)(z+3)}$.

5. Attempt any one part of the following: $7 \times 1 = 7$

In a partially distributed laboratory record of an analysis of a correlation data, the following result are legible:

Variance of x = 9

Regression equation: 8x - 10y = 66 = 0,40x - 18y = 214.

What were (a) the mean of x and y. (b) the standard deviation of y and the coefficient of x and y:

- Find the mean and variance of normal distribution.
- 6. Attempt any one part of the following:

 $7 \times 1 = 7$

- Find the real root of the equation $x^3 2x + 5 = 0$ by method of False positive correct to three decimal places. (a)
- State and prove the Lagrange interpolation formula. Find the interpolating (b) polynomial by By Lagrange interpolation formula for the given data

Ш	iar by by Lagrange interpolation formula for the given data							
1	x	5	6	9	11			
	1.6							
	y M	12	13	14	16			

Attempt any one part of the following: 7.

- Apply Simpson's 3/8 th rule to obtain approximate value of (i) $\int_0^{\pi/2} e^{Sin x} dx$ (ii) $\int_0^{0.3} (2x - x^2)^{1/2} dx$ using Simpson's rule with 6 interval.
- Find x for which y is maximum and find the max value of y

x	1.2	1.3	1.4	1.5	1.6
У	0.9320	0.9636	0.9855	0.9975	0.9996