

Printed pages:2 Roll No. www.FirstRanker.com www.FirstRanker.com
Sub Code: REC302

Paper ID:3008

B.TECH (SEM III) THEORY EXAMINATION 2017-18 ELECTONIC DEVICES AND CIRCUITS

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief.

- (a) Mention the advantages of negative feedback.
- (b)What do you mean by Base Width Modulation in BJT.
- (c)What is fluorescence?
- (d)How does direct recombination lifetime differ from indirect recombination lifetime?
- (e) Brief the Avalanche breakdown mechanism.
- (f) Differentiate EMOSFET with DMOSFET
- (g) Find the current gain β in CE configuration of BJT, if α = 0.98.

SECTION B

Q.2 Attempt any three of the following

(7x3=21)

- (a) Draw the CE amplifier with a resistance connected in Emitter and derive the expression for different characterizing parameters.
- (b) Discuss the various internal capacitances for BJT and MOSFET.
- (c) Explain the phenomenon of luminescence. What are its different types? How does fluorescence differ from phosphorescence? Discuss its application as a fluorescence lamp.
- (d) What is Einstein relation? Develop an expression to establish relation between diffusion coefficient & mobility of carriers.
- (e) Boron is implanted in to a n- type Si sample having donar concentration of 10¹⁶/cm³, to form abrupt junction. If the acceptor concentration in P-type region is 4×10¹⁸/cm³, determine the
- (i) Width of the depletion region
- (ii) depth of penetration on n-side & p-side at equilibrium. Take room temperature as 27°C;
 n_i = 1.5 × 10¹⁰/cm³ & relative permittivity of boron as 11.8.

Q.3 Section C Attempt Any one part of the following

(7x1=7)

(a) Draw the four basic feedback topologies. Compare the Input and output resistance among the feedback topolologies.

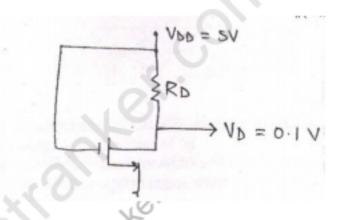
www.FirstRanker.com

www.FirstRanker.com

(b) Explain the working of common source amplifier with a resistance is connected in source

Lead. Draw its small signal equivalent circuit. Deduce the expression for overall voltage gain.

Q.4 Attempt Any one part of the following


(7x1=7)

- (a) Differentiate between direct and indirect band gap semiconductor. Also discuss the variation of energy band with alloy composition.
 - (b)What do you mean by Fermi level? Discuss the effect of temperature & doping on mobility. A Si sample is doped with 10¹⁷ As atoms/cm³. What is the equilibrium hole concentration on Po at 300K? Where is E_F relative to Ei.

Q.5 Attempt Any one part of the following

(7x1=7)

(a)Design the circuit shown in the fig to establish a drain voltage of 0.1V what is the effective resistance between drain and source at this operating point? Let V_f=1V, and K_n(W/L)=1mA\V².

(b) Construct P channel enhancement MOSFET. Draw and explain the I-V characteristics when V_{DS} is increased.

Q6 Attempt Any one part of the following

(7x1=7)

- (a) How BJT can be used as a amplifier and as a switch? Justify using required circuit waveform, mathematical expression.
- (b) Mention the different biasing technique used in BJT. Explain any two of them.

Q7 Attempt Any one part of the following

(7x1=7)

- (a) Draw the high frequency hybrid- π model of MOSFET.
 and Show that f_T=g_m/2 π(C_{gs}+C_{gd})
 - (b) Mention the conditions for oscillation. Derive the expression for frequency of oscillation in Phase shift Oscillator.