

Roll Www.FirstRanker.com www.FirstRanker.com

THEORY EXAMINATION (SEM-IV) 2016-17 INFORMATION THEORY AND CODING

Time: 3 Hours Max. Marks: 100

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

Explain the following:

 $10 \times 2 = 20$

- (a) Draw the block diagram of communication system
- (b) At what condition entropy attains maximum value? Write the expression for source efficiency
- (c) Out of following code which one is non singular?

Source	S_1	S_2	S_3	S_4
Code A	00	001	101	110
Code B	00	100	111	00

(d) List out

two important properties of mutual information

- (e) State Shannon Hartley Theorem with expression.
- (f) List out the properties of Block codes.
- (g) Find the hamming weight of two code vectors C₁=0001010, C2=1010101
- (h) What are convolutional codes? How is it different from block codes?
- Obtain an Expression for zero memory information sources emitting independent sequence of symbols
- (j) Why (23, 12) Golay code is called Perfect code?

SECTION - B

2. Attempt any five of the following questions:

 $5 \times 10 = 50$

- (a) (i) A source emits one of the four possible messages S₁, S₂, S₃ and S₄ with probabilities 4/11, 3/11, 2/11 and 2/11 respectively. Find the entropy of the source. List all the elements for the second extension of the source. Hence show that H (S²) =2 H(S).
 - (ii) Discuss the properties of Entropy
- (b) (i) Discuss External Property of Entropy with examples
 - (ii) Explain the need for source coding in communication system and discuss about compact code
- (c) (i) Consider the following S={X₁, X2, X3, X4, X5, X6} with probability P= {0.4, 0.2, 0.2, 0.1, 0.08, 0.02}. Find the code words using Shannon fano Algorithm and efficiency of source
 - (ii) Clearly explain differential entropy of continuous signal. How it is different from entropy of discrete signals?
- (d) (i) Explain the properties of Mutual information.
 - (ii) For a Systematic (7, 4) linear block code, the parity matrix P is given by

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

(A) Find all possible code vectors

FirstRanker.com Firstranker's chajce A single www.lenstrankeincomived vector www.lenstranker.com error R=[1011100]

- Discuss the data compression techniques (e) (i)
 - Consider the (4,3,2)code with input sequence u1=(101), u2=(110) and (ii) u³=(011). The corresponding input polynomials are u⁽¹⁾(D)= 1+D², u⁽²⁾(D)=1+D. construct the codeword using transform domain approach.
- A transmitter has symbol consisting of five letters {a1, a2, a3, a4, a5} and receiver (f) (i) as a symbol of four letters {b1, b2, b3, b4}. The joint probabilities of the system

$$P(A, B) = \begin{bmatrix} 0.25 & 0 & 0 & 0 \\ 0.10 & 0.30 & 0 & 0 \\ 0 & 0.05 & 0.10 & 0 \\ 0 & 0 & 0.05 & 0.1 \\ 0 & 0 & 0.05 & 0 \end{bmatrix}$$

Compute H (A), H (B), H (A, B) and I(A,B).

- Discuss about (i) priori entropy (ii) Posteriori Entropy (iii) Equivocation (ii)
- Explain uniquely decodable code and optimal code. (g) (i)
 - An information source produces sequences of independent symbols having the (ii) following probabilities. Construct ternary code using Huffman coding procedure and find it efficiency.

A	В	C	D	E.	F	G
1/3	1/27	1/3	1/9	1/9	1/27	1/27

- Explain the Concept of Shortened Cyclic codes and Burst error correcting codes (h) (i)
 - A source produces sequence of symbols having the following probabilities. (ii)

Α	В	C	D c	E,
0.25	0.25	0.2	0.13	0.15

Construct binary code using Shannon fano Elias coding procedure and find its Length and efficiency.

SECTION - C

Attempt any two of the following questions:

 $2 \times 15 = 30$

A Binary Symmetric Channel has following matrix with Source probabilities P(X1) = 3. (a) 2/3, P(X₂) =1/3. Determine H(X), H(Y), H(Y/X) and Chanel capacity

$$P\left(\frac{Y}{X}\right) = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

(b) Consider the four codes listed below. Identify the instantaneous codes using Kraft Mcmilan inequality theorem

Source symbol	Code A	Code B	Code C	Code D
S_1	0	0	0	0
S_2	100	10	100	10
S_3	110	110	110	110
S_4	111	11	11	111

- Write a Short note On:
 - BCH codes and RS codes Golay codes (i)
 - (iii) Burst and Random Error correcting codes
 - A (6, 3) Linear block code has following check bit C4=d₁+d₂, C₅=d₁+d₃, C₆=d₂+d₃

- Discuss about hamming distance and minimum distance with good examples. (a)
 - Consider the (3,1,2) convolution codes with $g^{(1)}=(110)$, $g^{(2)}=(101)$ and $g^{(3)}=(111)$ (b)
 - Draw the encoder diagram and find the generator matrix
 - Find the codeword corresponding to the information sequence (11101) using (ii) time domain approach.

