

on in self-bias circuit of aplifier? Explain the high mmon emitter amplifier.

owing:

10X2=20

ration of BJT differential essions for differential

tial pair and discuss the f MOS differential pair.

stance and CMRR for ential pair.

wing:

10×2=20

e generalized resonant ee impedances. Explain give the frequency of

riterion for oscillation. frequency of oscillation

negative feedback on an amplifier. Calculate and output resistance Printed Pages: 4

siminim insim insimin

EC401(MTU)

(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID: 130401
Roll No.

B. Tech.

(SEM. IV) THEORY EXAMINATION, 2014-15 ELECTRONICS CIRCUITS

Time: 3 Hours]

[Total Marks: 100

Note : (1)

Attempt all questions.
 All questions carry equal marks.

Attempt any four parts of following :

5×4=20

 (a) Derive an expression for the voltage gain, v_o/v_i of the circuit in the Figure 1.1

Figure 1.1

(b) Discuss how the performance of an OP-AMP is affected by the open loop gain of amplifier.

[1425]

130401]

www.FirstRanke.

1

[Contd...

130401]

3 <u>@</u>

current mirror with suitable diagram.

transfer function.

What is bias stabilization? Explain the basic correspond?

<u>a</u> <u>@</u> Derive an expression for the input resistance of Describe the difference between inverting and the inverting amplifier of the Figure 1.2 taking into non-inverting amplifier.

account the finite open loop gain A of the OP-

Figure 1.2

0

For an amplifier having a slew rate of 60 V/µs, what is the highest frequency at which a 20-V peak-to-peak sine wave can be produced at the

Explain the concept of voltage follower What are the ideal characteristics of op-amp?

3

3 <u>a</u> Discuss the iD- VDs characteristics of n-channel enhancement type MOSFET. Indicate the three distinct regions of operation.

be 2 mA for $v_{DS} = 4 \text{ V}$ and 2.2 mA for $v_{\rm DS} = 8$ V. What values of r_0 , V_A , and λ saturation region at a constant v_{GS}, i_D is found to

5×4=20

Attempt any four parts of following

For a particular MOSFET operating in the

For the CS amplifier, determine its high frequency

Contd...

130401]

<u>@</u> is 0.5 V less is used, what does V_s become? What bias current results? Vt be for this device? If a device for which V measured and found to be 2 V. What must $k'n(W/L) = 2mA/V^2$, the source voltage was design with $V_0 = 5 \text{ V}$ and $R_s = 1 \text{ kQ}$. The bias circuit of Figure 2.1 is used in a For an enhancement MOSFET with

Figure 2.1

Draw the high frequency model of MOSFET and

Attempt any two parts of following: explain the MOS capacitances

www.FirstRanke.

connecting two diodes back to back. Explain input Why transistor action cannot be achieved by and output characteristics of Common emitter BJT. 10×2=20

3

æ

A pnp transistor operates with an emitter-to area of this transistor with that of a small-signal transistor? Compare the emitter-base junction $V_{EB} = 0.70 \text{ V}$. How much larger is it? transistor that conducts i_c = 1 mA with base current is required? What is Is for this collector voltage of 5 V, an emitter current of 10 A, and $V_{EB} = 0.85$ V. For $\beta = 15$, what

Contd...

(e) What is emitter stabilization in self-bias circuit of an npn transistor in CE amplifier? Explain the high frequency response of common emitter amplifier.

4 Attempt any two parts of following :

10X2=20

- (a) Explain the small signal operation of BJT differential pair and derive the expressions for differential input resistance and gain.
- (b) Explain CS MOS differential pair and discuss the non ideal characteristics of MOS differential pair.
- (c) Calculate the output resistance and CMRR for active loaded BJT differential pair.
- 5 Attempt any two parts of following :

10×2=2

- (a) Draw a neat sketch of a generalized resonant circuit oscillator using three impedances. Explain
 Hartley oscillator and derive the frequency of oscillation.
- (b) Define the Barkhausen criterion for oscillation. Derive an expression for frequency of oscillation of Wein bridge oscillator.
- (c) Discuss the effect of negative feedback on noise and Bandwidth of an amplifier. Calculate the gain, input resistance and output resistance of trans-resistance amplifier.

[1425]

Printed Pages: 4

(Following Paper ID and Roll No. PAPER ID: 130401

B. 1

(SEM. IV) THEORY E ELECTRON

Time: 3 Hours]

Note:

Attempt all qu

Roll No.

- (2) All questions
- Attempt any four parts of
 - (a) Derive an expression of the circuit in the

 (b) Discuss how the per affected by the ope

130401]

WWW.FiretBanke

130401]