

(Following Paper ID and Roll No. to be filled in your
Answer Books)

com

Answer Books)

Paper ID: 140408

B.TECH.

Theory Examination (Semester-IV) 2015-16

APPLIED THERMODYNAMICS

Time: 3 Hours Max. Marks: 100

Section-A

- Q1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(2\times10=20)$
 - (a) Define the heat rate using in the Rankine cycle.
 - (b) Define propulsive power and propulsive efficiency.
 - (c) Explain about congeneration.
 - (d) Explain the significance of Willian's law in steam engines.
 - (e) How Equivalent evaporation is used for comparison of boilers?

(1) P.T.O.

2605/**497**/673/16825

k oi w		
s che ww	i)	(i) Determine the stoichiometric air fuel ratio by
ker'		mass.
Firstran	Ξ)	(ii) If 20% excess air is supplied, find percentage composition of dry fuel gas by volume.
R		(2)
605/497/673/16825	3/1	6825

2605/**497**/673/16825

(er.con ice v.FirstRanker .com Q≨ Attempt any five question. Each question carries equal **a** Section-B

(e) A double acting single cylinder steam engine runs at

the efficiency of the cycle.

What do you understand by inversion curve? Define Joules coefficient. How these can be used for refrig-A sample fuel has the following percentage compooxygen = 3.5% nitrogen = 1.5% and Ash = 1%. sition by weight, Carbon = 84% hydrogen = 10%. (5×10=50)

fuel ratio by

An impulse steam turbine of 180 kW has steam flow-

(ii) Indicated thermal

(ii) Cylinder dimensions

(i) Mean effective pressure

NWW.FirstP

0.75. Assume dry saturated steam at inlet, hyperbolic stroke. The L/D ratio is 1.25 and diagram factor is

operation are 10 bar and 1 bar. Cut off is 40% of the 250 rpm and evelops 30 kW. The pressure limits of

expansion and neglighble effect of piston rod. Find:

ing at rate of 165 kg/min and leaving axially. Steam

turbine blade speed is 175 m/s and it leaves nozzle

at 400 m/s. For the blade velocity coefficient of 0.9.

.com

www.FirstRanker

diagrams explain the difference between the work-

Attempt any two question. Each question carries equal marks. = 90%: nozzle angle = 20°: ratio of blade speed to whirl no component of steam speed = 0.5: blade velocity co-effi-The following data refer to a single stage impulse turbine: Isentropic nozzle heat drop = 251 kJ/kg : nozzle efficiency ing of a propeller turbine and a jet turbine. Section-C

(2×15=30)

 $\mathbf{ro}_{pt} = (\eta_{T}, \eta_{C}, T_{max}/T_{min})^{2\gamma/3(\gamma-1)}$

ratio is given by

specific output of the plant, the optimum overall pressure

Where γ – Adiabatic index : η_{τ} = Isentropic efficiency of

MWW.FirstP

www.FirstRanker .com

stae turbine. If the maximum temperature

(T_{max}, K) and minmum temperature (T_{min}, K) in the cycle remain constand, show that for maximum

20m/s. Determine: cient = 0.9; the velocity of steam entering the nozzle =

in to the blades without shock and leaves the blades

in an axial direction.

The blade angles at inlet and outlet if the steam enters

Q5. A boiler generate 7.5 kg of steam per kg of coal/burnt at a pressure of 11 bar, from feed water having a temperature of tion 1.15. specific heat of steam at constant pressure is 2.3. 70°C. The efficiency of boiler is 75% and factor of evapora-

 $\eta_{\rm C}$ = Isentropic efficiency of compressor.

2605/497/673/16825

2605/497/673/16825

(ii) Calorific value of coal in kJ/kg;

ated;

(iii) Equivalent evaporation in kg of steam per kg of coal.

(6)

2605/497/673/16825

MMM.FilestRealtheir.com