

rinted Pages: 7	NAS-401/EAS-401
	and Roll No. to be filled in your swer Books)
Paper ID : 199419	Roll No.

B. TECH.

Theory Examination (Semester-IV) 2015-16

ENGG MATHEMATICS-III

Time: 3 Hours

Max. Marks: 100

Section-A

- 1. Attempt all questions of this section. Each question carry equal marks. $(2 \times 10 = 20)$
 - (a) Write the cauchy's Reimaun conditions in polar coordinates system.
 - (b) Write the statement of generalized cauchy's integral formula for n^{th} derivative of an analytic function at the point $Z = Z_0$.
 - (c) Find the Z transform of $U_n = \{a^n\}$
 - (d) Write the normal equations to fit a curve $y = ax^2 + b$ by least square method.

(1) P.T.O. 2105/**38**/1259/31475

www.FirstRanker.com

WWW.FirstRanke

2105/38/1259/31475

- (e) If covariance between x and y variable is 10 and the variance of x and y are respectively 16 and 9, find the coefficient of correlation.
- (f) The regression equations calculated from a given set of observations for two random variable are

x = -0.4y + 6.4 and y = -0.6x + 4.6 calculate mean values of x and y.

(g) Write the Newton's Raphson iterative formula to find the value of \sqrt{N} .

(h) Find the missing data in the given table : x = 0 f(x) 580 556 - 465

	,	Ξ
	٠ (If $f(n)$
1		Q.
		given i
I		둳.
	,	following
		table
		• •

 x
 0
 0.5
 1

 f(x)
 1
 0.8
 0.5

then using trapezoidal rule, evaluate

 $\int f(x)dx$

(j) Find the third forward difference with the arguments 2. 4. 6. 8 of the function $f(x) = x^3 - 2x$

2, 4, 6, 8 of the function $f(x) = x^3 - 2x$ (2)

Section-B

2. Attempt any five questions from this section.

 $(10\times5=50)$

(a) Find the Laurent series for the function

 $f(z) = \frac{7z^2 + 9z - 18}{Z^3 - 9z}, Z \text{ is complex variable}$

(i) 0 < |z| < 3

valid for the regions

(ii) |z| > 3

(b) Using calculus of residue, evaluate the following integral

$$\int \frac{dx}{(a^2+x^2)^2}$$

- (c) Find the inverse Fourier sine transform of $\frac{1}{x}e^{-ax}$
- Using least square method, fit a second degree polynomial from the following data:

<u>a</u>

Y	×
12.0	0
10.5	1
10.0	2
8.0	3
7.0	4
8.0 7.5	5
	6
8.5	7
9.0	∞

Also estimate y at x = 6.5

3

2105/38/1259/31475

P.T.O.

www.kitest. Battle.

2105/38/1259/31475

(e) For the following data, calculate the finite differences nomials. Also interpolate at x = 0.25 and x = 0.35and obtain the forward and backward difference poly-

f(x)	x
1.40	0.1
1.56	0.2
1.76	0.3
2.00	0.4
2.28	0.5

Construct the divided difference table for the data.

 \mathfrak{S}

521.0	282.12 521.0	131.0	31.0	5.87	f(x) 1.62	(x) <i>f</i>
8.0	6.5	5.0	3.0	1.5	0.5	x

proximation to the value of f(z). Hence find the interpolating polynomial and an ap-

(8) Solve the system of equations AX=B, where

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & -2 \\ 4 & 0 & 2 & 1 \\ 3 & 2 & 2 & 0 \\ 1 & 3 & 2 & -1 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} -10 \\ 8 \\ 7 \\ -5 \end{bmatrix}$$

diagonal elements of L as 1. using the LU decdomposition method. Take all the

 Ξ Solve the initial value problem

$$\frac{dy}{dx} = -2xy^2, y(0) = 1$$

with h = 0.1 on the interval [0,0.3]. Use the fourth order Runge-Kutta method.

Section-C

Note: Attempt any two questions from this section. Each question carry equal marks. $(15 \times 2 = 30)$

3. (a) Show that for the function give as -

$$f(z) = \begin{cases} \frac{2xy(x+iy)}{x^z + y^z} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$$

f(z) at origin does not exist. The C-R conditions are satisfied at origin but derivative of

(b) Verify that the function on 4(xy) = xy is harmonic and find its conjugate harmonic function. Express u+iv as an analytic function f(z).

$$u=x^2-y^2-y$$

2105/38/1259/31475

MANN FIRSTRAINKE

2105/38/1259/31475

(c) Find the Fourier transform of Block function f(t) of height 1 and duration a defined by

$$f(t) = \begin{cases} 1 & \text{for } |t| \le \frac{a}{2} \\ 0 & \text{otherwise} \end{cases}$$

- $f(t) = \begin{cases} 1 & \text{for } |t| \le \frac{a}{2} \\ 0 & \text{otherwise} \end{cases}$
- 4. (a) Using Z tranform, solve the difference equation

$$u_{n+2} - 4u_{n+1} + 3u_n = 5^n$$

with $u_0 = u_1 = 1$

- (b) The first four moments of a distribution about x = 4 are the distribution. 1, 4, 10, 45. Comment on the skewness and Kurtosis of
- (c) For 10 observations on price (x) and supply (y) the
- following data were obtained
- $\Sigma x^2 = 5506$ and $\Sigma_{xy} = 3467$ $\Sigma x = 130, \Sigma y = 220, \Sigma x^2 = 2288$

Obtain the two lines of regression.

5. (a) Find the root of the euqation $xe^x = 3$ by regula talsi method correct up to two decimal places in the interval (1,

(b) Prove the following identities:

(ii) $\left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{E(e^x)}{\Delta^2 e^x} = e^x$

(c) The velocity ν of a particle at distance s from a point on

its path is given by the following table: s(m.)ν (m./s.) 47 0 10 20 2 30 65 61 40 52 38 60

Estimate the time taken to travel 60m. Using Simpson's onethird rule.

MMM Files Ranke,