

Roll Www.FirstRanker.com www.FirstRanker.com B. TECH.

THEORY EXAMINATION (SEM-IV) 2016-17 ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours Max. Marks: 100

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

Attempt all parts of the following questions:

 $10 \times 2 = 20$

- (a) Explain the physical significance of Divergence and Curl.
- (b) Derive and expression for inductance per unit length of coaxial conductors.
- (c) Express $B = \left(\frac{10}{r}\right)r + r\cos\theta$ θ in cylindrical coordinates.
- (d) Explain the terms Transmission coefficient and reflection coefficient.
- (e) Prove the electric field vector E = (grad V), where V is a scalar potential field.
- (f) Transform the point (1, 1, 6) to spherical coordinates.
- (g) Verify whether the scalar field S = ρ²zcos2Φ Φ in cylindrical coordinates in a solution of Laplace's equation.
- (h) A copper wire carries a conduction current of 1 amp at 60 Hz. What is the displacement current in the wirte? Assume μ = μ₀, ε = ε₀ and σ = 5.8 × 10⁷ ohm/m.
- State Stroke's theorem and Divergence theorem.
- State the Gauss's law and derive the related Maxwell equation.

SECTION - B

2. Attempt any five of the following questions:

 $5 \times 10 = 50$

- (a) Derive and explain the mathematical form of Poynting theorem.
- (b) Given that $D = \left(\frac{5r^2}{4}\right)r$ in spherical co-ordinate. Find the volume enclosed between r=1 and r=2.
- (c) Explain the phenomenon of polarization and its types.
- (d) Prove that the magnetic field due to an infinite conductor carrying current i at a distance r is $H = \frac{i}{2\pi r}$ A/m
- (e) Explain the tangential and normal boundary conditions between two dielectrics for static electric fields.
- (f) Calculate E at P(1, 1, 1) in free space caused by four identical 3-nC point charges located at p₁ = (1, 1, 0), p₂ = (-1, 1, 0), p₃ = (-1, -1, 0) and p₄ = (1, -1, 0).
- (g) State and explain Maxwell's equations for time varying fields in differential and integral forms and their significance.
- (h) A uniform plane wave propagating in good conductor. If the magnetic field intensity is given by H = 0.1e⁻¹⁵ cos(2π × 10⁸l 15z) i A/m, determine the conductivity and corresponding component of E field. Also calculate the average power loss in a block of unit area and thickness t.

SECTION - C

Attempt any two of the following questions:

 $2 \times 15 = 30$

- 3 A uniform plane wave propagating in a medium has E = 2e^{-az} sin(10⁸t βz) j V/m. If a medium is characterized by ε_r = 1, μ_r = 20 and σ = 3 S/m, determine α, β and H.
- 4 Discuss the solution of plane wave equation in conducting media (Lossy Dielectric). Derive the above up to Propagation Constant. Attenuation Constant and Phase Constant.
- 5 Explain the reflection of plane wave for the normal incidence. Discuss about Reflection and Transmission coefficient for F and H.

