Printed Pages: 02

www.FirstRanker.com
www.FirstRanker.com
Roll No. \qquad

B. TECH.
 (SEM-IV) THEORY EXAMINATION 2017-18
 MATHEMATICS - III

Time: 3 Hours
Total Marks: 70
Note: Attempt all Sections. If require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.
a) Discuss Singularity and its types.
b) Write Cauchy-Riemann equation in polar co-ordinates.
c) The life of army shoes is normally distributed with mean 8 months and standard deviation 2 months. If 5000 pairs are insured, how many pairs would be expected to need replacement after 12 months? Given that $\mathrm{P}(z \geq 2)=0.0228$.
d) Determine moment generating function of Binomial distribution.
e) Prove that: $E^{\frac{1}{2}}=\mu+\frac{1}{2} \delta$
f) Write Newton-Cote's quadrature formula.
g) Find Z-transform of $f(k)=u(-k)$.

SECTION B

2. Attempt any three of the following:
a) Determine an analytic function $\mathrm{f}(\mathrm{z})$ in terms of $z \mathrm{if} \tilde{u}+v=2 \frac{\sin 2 x}{e^{2 y}}+e^{2 y}-2 \cos 2 x$.
b) Find the mean variance of Poisson distribution.
c) Find $\int_{0}^{6} \frac{e^{x}}{1+x} d x$ using (i) Trapezôidal rule, (ii) Simpson's $1 / 3^{\text {rd }}$ rule and (iii) Simpson's $3 / 8^{\text {th }}$ rule.
d) A rod is rotating in a plane. The following table gives the angle θ (in radians) through which the rod has turned for various values of time t (in seconds).

$\mathrm{t}:$	0	0.2	0.4	0.6	0.8	1.0	1.2
$\theta:$	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity and angular acceleration at $\mathrm{t}=0.2$ and $\mathrm{t}=1.2$ second.
e) Find Fourier cosine transform of $\frac{1}{1+x^{2}}$, hence find Fourier sine transform of $\frac{1}{1+x^{2}}$
3. Attempt any one part of the following:
(a) Verify Cauchy theorem by integrating $e^{i z}$ along the boundary of the triangle with the vertices at the points $1+i,-1+i$ and $-1-i$.
(b) Evaluate $\int_{0}^{\infty} \frac{\sin m x}{x} d x, m>0$..
4. Attempt any one part of the following:
$7 \times 1=7$
(a) The following table represents the height of a batch of 100 students. Calculate skewness and kurtosis:

Height (in cm)	59	61	63	65	67	69	71	73	75
No. of students	0	2	6	20	40	20	8	2	2

(b) Use the method of least squares to fit the curve $y=\frac{c_{0}}{x}+c_{1} \sqrt{x}$ to the following table of values:

x	0.1	0.2	0.4	0.5	1	2
y	21	11	7	6	5	6

5. Attempt any one part of the following:
$7 \times 1=7$
(a) Find the root of the equation $x e^{x}=\cos x$ using Regula-Falsi method correct to four decimal places.
(b) Find Newton's divided difference polynomial for the following data:

$\mathrm{x}:$	-3	-1	0	3	5
$\mathrm{f}(\mathrm{x}):$	-30	-22	-12	330	3458

6. Attempt any one part of the following:
$7 \times 1=7$
(a) Solve the initial value problem $u^{\prime}=-2 t u^{2}, u(\theta)=1$ with $h=0.2$ on the interval $[0,0.4]$. Use Runge-Kutta fourth order method and compare your result with exact solution.
(b) Solve the following system of linear equations by Matrix decomposition method taking $l_{i i}=1$ for $1 \leq \mathrm{i} \leq 3$.

$$
3 x-y+2 z=12 ; \quad x+2 y+3 z=11 ; \quad 2 x-2 y-z=2
$$

7. Attempt any one part of the following:
(a) Using Z-transform, solve the following difference equation:

$$
y_{k+2}+4 y_{k+1}+3 y_{k}=3^{k}, \text { given that } y_{0}=0 \text { and } y_{1}=1
$$

(b) The temperature u in the semi-infinite rod $0 \leq x<\infty$ is determined by the differential equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ subject to conditions
(i) $u=0$ when $t=0, x \geq 0$
(ii) $\frac{\partial u}{\partial x}=-\mu$ (a constant) when $x=0$ and $t>0$, (iii) $\mathrm{u}(\mathrm{x}, \mathrm{t})$ is bounded.

Determine the temperature $\mathrm{u}(\mathrm{x}, \mathrm{t})$.

