Printed Pages: 02

Paper Id: 1 9 9 4 2 1

www.FirstRanker.com www.FirstRanker.com Sub Code: RAS401

Roll No.

B. TECH. (SEM-IV) THEORY EXAMINATION 2017-18 **MATHEMATICS - III**

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a) Discuss Singularity and its types.
- b) Write Cauchy-Riemann equation in polar co-ordinates.
- c) The life of army shoes is normally distributed with mean 8 months and standard deviation 2 months. If 5000 pairs are insured, how many pairs would be expected to need replacement after 12 months? Given that $P(z \ge 2) = 0.0228$.
- d) Determine moment generating function of Binomial distribution.
- e) Prove that: $E^{\frac{1}{2}} = \mu + \frac{1}{2}\delta$
- Write Newton-Cote's quadrature formula.
- Find Z-transform of f(k) = u(-k).

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

- a) Determine an analytic function f(z) in terms of z if $u + v = 2 \frac{\sin 2x}{e^{2y}} + e^{2y} 2\cos 2x$.
- Find the mean variance of Poisson distribution
- c) Find $\int_0^6 \frac{e^x}{1+x} dx$ using (i) Trapezoidal rule, (ii) Simpson's $1/3^{\text{rd}}$ rule and (iii) Simpson's $3/8^{\text{th}}$ rule.
- A rod is rotating in a plane. The following table gives the angle θ (in radians) through which the rod has turned for various values of time t (in seconds).

t: 0 0.2 0.4 1.0 1.2

 θ : 0 0.12 2.02 0.49 1.12 3.20 4.67

Calculate the angular velocity and angular acceleration at t = 0.2 and t = 1.2 second.

e) Find Fourier cosine transform of $\frac{1}{1+x^2}$, hence find Fourier sine transform of $\frac{1}{1+x^2}$

www.FirstRanker.com SECTION C

www.FirstRanker.com

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Verify Cauchy theorem by integrating e^{iz} along the boundary of the triangle with the vertices at the points 1+i, -1+i and -1-i.
- **(b)** Evaluate $\int_0^\infty \frac{\sin mx}{x} dx$, m > 0..

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) The following table represents the height of a batch of 100 students. Calculate skewness and kurtosis:

Height (in cm)	59	61	63	65	67	69	71	73	75
No. of students	0	2	6	20	40	20	8	2	2

(b) Use the method of least squares to fit the curve $y = \frac{c_0}{x} + c_1 \sqrt{x}$ to the following table of values:

X	0.1	0.2	0.4	0.5	1	2
y	21	11	7	6	5	6

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Find the root of the equation $xe^x = \cos x$ using Regula-Falsi method correct to four decimal places.
- **(b)** Find Newton's divided difference polynomial for the following data:

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- Solve the initial value problem $u' = -2tu^2$, u(0) = 1 with h = 0.2 on the interval [0, 0.4]. Use Runge-Kutta fourth order method and compare your result with exact solution.
- (b) Solve the following system of linear equations by Matrix decomposition method taking $l_{ii} = 1$ for $1 \le i \le 3$.

$$3x-y+2z=12$$
; $x+2y+3z=11$; $2x-2y-z=2$

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) Using Z-transform, solve the following difference equation:

$$y_{k+2} + 4y_{k+1} + 3y_k = 3^k$$
, given that $y_0 = 0$ and $y_1 = 1$.

- (b) The temperature u in the semi-infinite rod $0 \le x < \infty$ is determined by the differential equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ subject to conditions
 - (i) u = 0 when $t = 0, x \ge 0$ (ii) $\frac{\partial u}{\partial x} = -\mu$ (a constant) when x = 0 and t > 0, (iii) u(x, t) is bounded.

Determine the temperature u(x, t).