Sub Code: ROE043

www.FirstRanker.com

B.TECH (SEM IV) THEORY EXAMINATION 2018-19 LASER SYSTEMS AND APPLICATIONS

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief.

 $2 \times 7 = 14$

- What was Planck's revolutionary idea to explain black body radiation spectrum.
- What do you mean by quantum mechanical tunneling? Give example.
- c. Laser beam has a band width of 2500Hz. What are the values of coherence length and coherence time?
- d. Why population inversion state is a known as a negative temperature state?
- e. What are metastable states? Explain their role to get laser action.
- Explain the role of nitrogen and helium gas in carbon dioxide laser.
- List the difference between holography and ordinary photography.

SECTION B

Attempt any three of the following:

 $7 \times 3 = 21$

- a. A particle is confined to move in a one dimensional infinite potential box of width 'a'. Write down Schrodinger's wave equation and solve it to find energy eigen values and eigen functions.
- Explain Einstein's A and B coefficients. Derive a relation between them and explain the significance of this equation.
- What do you mean by Q-switching? Describe various methods to achieve this.
- What are Neodymium lasers? Explain construction, working, energy level diagram and applications of Nd-YAG lasers.
- What is the difference between LIDAR and RADAR? Discuss its components and their role. Explain the principle of operation of LIDAR.

SECTION C

3. Attempt any one part of the following:

 $7 \times 1 = 7$

- (a) Explain spectral series of hydrogen atom with a suitable diagram. Calculate the series limit of all the series.
- (b) An electron is bound by a potential which closely approaches square well of width 2.5X10⁻¹⁰m. Calculate the lowest three permissible quantum energies the electron can have.

4. Attempt any one part of the following:

 $7 \times 1 = 7$

- (a) What do you mean by coherence? Explain temporal and spatial coherence. Derive an expression for temporal and spatial coherence length.
- (b) Ruby laser has two states at 27°C. If it emits radiation of wavelength 7000Å, then calculate relative population (N₂/N₁).

Page 1 of 2

www.FirstRanker.com

www.FirstRanker.com

5. Attempt any one part of the following:

 $7 \times 1 = 7$

- Describe the essential components of a laser system with the help of suitable diagram. Describe various pumping mechanism used in different laser systems.
- What do you mean by loop gain in a laser system? Derive an expression for (b) loop gain. Describe the threshold condition for laser oscillation.

6. Attempt any one part of the following:

 $7 \times 1 = 7$

- Why excimer laser is known as self-illuminating laser? Explain the excitation mechanism of excimer laser with suitable energy level diagram. Give some output wavelengths of excimer laser.
- Discuss the excitation mechanism of semiconductor diode laser. What is the (b) difference between LED and LASER?

7. Attempt any one part of the following:

 $7 \times 1 = 7$

- Explain the principle of holography and discuss its applications. Describe construction and reconstruction of holograms.
- Discuss the applications of lasers in material processing. What advantages are there in processing materials using lasers?

Physical Constants:

Mass of electron : $m_0 = 9.1X10^{-31}kg$

Speed of light $:c = 3X10^8 m/s$

Planck's constant : $h = 6.62X10^{-34}I - s$

27.Nay.201909:01.15 A5.115.62.2 10⁻²mK Boltzmann's constant: $k = 8.6X10^{-5} eV/K$

Rydberg's constant: $R_H = 1.0973X10^7 m^{-1}$

Wein's constant: $b = 0.2896X \cdot 10^{-2} mK$

