

MANN FIRST RAINKER COM

 Ξ

Define Scalar magnetic potential.

Write the Maxwell equation in differential and integral

State Poynting Theorem.

Define Convection current.

Give the relation between Magnetic field and Magnetic flux density?

form for static magnetic fields.

Section-B

Affempt any five questions from this section. (5x10=50)

stRanke Given the potential $V = \frac{10}{2} \sin \theta \cos \phi$. Find the electric

flux density D at $\left(2, \frac{\pi}{2}, 0\right)$

State and explain Maxwell's equations for electrostatics and magnetostatics. Discuss its physical significance.

Prove the vector triple product identiy

AXBXC = B(A.C)-C(A.B). Evaluate div (curlA) if

$$A = \frac{\sin \phi}{r^2} a_r - \frac{\cos \phi}{r^2} a_{\phi}.$$

NEC-508

2

8800

ω

NEC-508

- Explain the pehnomenon of polarization and explain its
- 6 field intensity due to line charge density ρ_i . State Coulomb's law. Derive an expression for elecric
- coefficients for normal incidence. Derive the relation between the two. Derive the expression of reflection and transmission
- œ charged wire as an application of Ampere circuital law. Find the magnetic field intensity due to infinitely long
- good conductors. Find out the angle of characteristic Find the value of α (attenuation), β (Phase Constant) for impedence for good conductors.

Section-C

Attempt any two questions from this section.

(2x15=30)

Discuss the solution of plane wave equation in conducting propagation constant, attenuation constant and phase constant media (Lossy Dielectric). Derive the above up to

4

NEC-508

E Derive the boundary conditions for electric field between α two dielectrics having different permittivity interfaces. Find the expression for α , β , γ for lossless or perfect Define propagation constant and characteristic impedace.

Space has an amplitude of $E_x = 10V/m$. find V, β, λ, η and the dielectric medium. A 10 GHz plane wave travelling in free amplitude of H.

MANN FIRSTRANKER COM

www.FirstRanker.com