Printed Pages: 7

NEE - 503

Paper ID: 2289789 (Following Paper ID and Roll No. to be filled in your Answer Books) Roll No.

Regular Theory Examination (Odd Sem-V), 2016-17 B.TECH.

Time: 3 Hours

CONTROL SYSTEM

Max. Marks: 100

SECTION-A

Attempt all parts. All parts carry equal marks. Write

answer of each part in short.

(10×2=20)

Discuss open loop and closed loop system giving suitable examine.

of a control system. Discuss the effect of feedback on the time constant

Explain the working of A.C servomotor with neat

Give the comparison between PI and PID controller.

Discuss the significance of various time domain specifications.

Establish the relation between Routh and Hurwitz stability criterion.

503/12/2016/5600

Ξ

[P.T.O.

www.FirstRanke

503/12/2016/5600

3

503/12/2016/5600

3

[P.T.O.

www.FirstRanker.com

j) 三 Attempt any three questions from this section ≅

Using block diagram reduction techniques, find the closed loop transfer function of the system whose block diagram (3×10=30)

'n

NEE - 503

2.

Explain in brief:

9

Gain Margin Phase Margin

What do you understand by relative stability?

Differentiate between lag and lead network in view of their Bode - Plot.

Discuss the advantages of state variable technique

over transfer function approach.

SECTION-B

For a closed loop system whose transfer is $G(s)H(s) = \frac{Ke^{-s\tau}}{s(s+1)}$, determine the maximum value of

į.

the gain 'K' for stability.

response for a second order system with relevant of the correlation between time response and frequency What is closed loop frequency response? Give an account expressions. www.FirstRanke.

state equation using time domain method.

NEE - 503

when subjected to unit impulse input for damping ratio Derive the expression for second order system response (5) < 1.

transfer function. A unity feedback system is characterized by an open loop

 $G(s) = \frac{K}{s(s+10)}$

damping ratio of 0.5. For this value of 'K'. Determine overshoot for a unit step input Determine the gain 'K' so that the system will have a the settling time, peak overshoot and time to peal

Obtain the complete solution of nonhomogeneous Derive the transfer function from state model.(2)

Discuss the significance of Lag network. Also draw its s-plane representation and bode plot.

ভ

503/12/2016/5600

503/12/2016/5600

(5)

[P.T.O.

SECTION-C

NEE - 503

Attempt all questions

Attempt any one part of the following. $(10\times1=10)$

Find the transfer function of the signal flow graph shown in fig.2, using Mason's gain formulae.

H8.2 ₹

'K' is 1. Determine the sensitivity of transfer fig.3. The normal value of the process parameter Consider the feedback control system shown in What do understand by the term sensitivity?

function $T(s) = \frac{C(s)}{R(s)}$ to variations in parameter 'K', at w=5.

3

6

Discuss the effect on the performance of a second order control system of

ভ

Integral control Derivative control

Attempt any one part of the following (10×1=10)

'n

Explain the working principle of stepper motor with neat diagram.

NEE - 503

Attempt any one part of the following: $(10 \times 1 = 10)$

Discuss different type of test signal used for analysis of control system in time domain.

shown in fig. 4. 2m open loop transfer function of the system is. The reference input to a unity feedback system is

$$G(s) = \frac{400(s+1)}{(s+2)(s+8)}$$

Calculate the steady-state error.

www.FirstRanke.

9

3

503/12/2016/5600

3

NEE - 503

Find the range of K for all the roots to lie to the left is, s3+5s2+12s+k=0 The characteristics equation for a feedback control

Sketch the root locus for the closed loop control

system with
$$G(s) = \frac{\Lambda}{s(s+1)(s^2+4s+5)}$$

Attempt any one Part of the following: (10×1=10)

input of unit magnitude and variable frequency w is given as
$$C(t) = \frac{1}{(t - 2)^2} \sum_{n=2}^{\infty} Sin \left(wt - \tan^{-1} \frac{27u}{\sqrt{1 - u^2}} \right)$$

The steady state output of the system for a sinusoidal

'n

Attempt any one part of the following. $(10 \times 1 = 10)$

$$C(t) = \frac{1}{\sqrt{(1-u^2)^2 + 4z^2u^2}} Sin\left(wt - \tan^{-1} \frac{27u}{\sqrt{1-u^2}}\right)$$

- Resonant frequency
- Resonant Peak
- Bandwidth
- iv) Phase angle.

ਭ

Draw Bode plot (log magnitude plot) for the transfer

$$G(s) = \frac{20s}{s^2 + 20s + (100)^2}$$

$$s = \frac{200}{s^2 + 20s + (1)}$$

 $\mathbf{X} = \begin{bmatrix} -3 & -1 \\ 2 & 0 \end{bmatrix} X + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u$ The state equation for a system is

unity feed back system with plant transfer function. Design a phase lead compensator for a negative Controllable .

9

 $Gp(s) = \frac{1}{s(s+10)(s+1000)}$ to satisfy the

NEE - 503

stability of a unity feedback system with open loop Using Nyquist stability criterion, Investigate the transfer function.

$$G(s) = \frac{(s-z_1)}{s(s+p_1)}, z_1, p_1 > 0$$

Also discuss the significance of M circle.

State and explain controllability and observability in view of Kalman and Gilbert test.

check whether the system is completely

www.FirstRanke

static error constant =1000 S-1 phase margin is atleast 45°