(Following Paper ID and Roll No. to be filled in your

NEC-508

Printed Pages: 4

Roll No.

Answer Books)

B.TECH

Regular Theory Examination (Odd Sem - V), 2016 - 17 **FUNDAMENTALS OF E.M. THEORY**

Time: 3 Hours

Max. Marks: 100

Section - A

Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(10 \times 2 = 20)$

 $\vec{B} = 2f_x + 3f_y$. Find the projection of \vec{A} on \vec{B} .

Given two vectors $\vec{A} = 4f_y + 10f_z$ and

Given $\bar{A} = 5f_x - 2f_y + f_z$, find the expression of a Transform the vector $4f_x - 2f_y - 4f_z$ into spherical coordinates at a point P(x = -2, y = -3, z = 4). unit vector $f_{\rm B}$ such that $f_{\rm B}$ is parallel to \vec{A}

MANIFIELL

A charge $Q_2 = 121 \times 10^{-9}$ c is located in vacuum at $P_2(-0.03, 0.01, -0.04)$. Find force on Q_2 due to $Q_1 = 100 \,\mu c$ at $P_1(0.03, 0.08, 0.02)$. All distances in meters.

(b)

C

charges Q = 2nc, at the corners 1m on a side. Find the stored energy in a system of four identical

<u>e</u>)

[P.T.O.

h)

<u>.</u>

4

Angular velocity. Phase constant β

The wave impedance.

www.FirstRanker.com

9 **D**, an electric field? What happens when a solid conductor is placed in **NEC-508**

Define - Polarization

Explain - electric susceptibility

Write and explain differential form of Faraday's law.

Explain the significance of displacement current.

Attempt any five questions from this section Section - B

Maxwell's equations. Write and explain integral and differential form of $(5 \times 10 = 50)$

'n A lossless dielectric medium has $\sigma = 0$, $\mu_r = 1$ and $\epsilon_r = 4$. expressed as An electromagnetic wave has magnetic filed components

 $\vec{H} = -0.1\cos(wt - z)f_x + 0.5\sin(wt - z)f_y \frac{A}{m}$

Show that in case of a semi-infinite solid conductor, the What do you understand by skin effect? Define skin depth. Electric field intensity.

skin depth S is given by $S = \sqrt{\frac{2}{w\mu\sigma}}$

508/12/2016/5600

 \mathcal{D}

508/12/2016/5600

 \mathfrak{S}

[P.T.O.

NEC-508

Show that for uniform plane wave in a perfect medium, magnitude is constant of the medium. E and H are normal to each other and the ratio of their

distributions. State and explain Biot-Savart's law for static magnetic fields as applied to different types of current

6

differential form as used in magnetic field State and explain Ampere's law both in integral and

State and explain Gauss's law of electromagnetics in integral form.

 ∞

9

Derive Poisson's and Laplace's equations from fundamentals.

Section - C

Attempt any two questions from this section $(2 \times 15 = 30)$

A total charge of 40 nc is uniformly distributed over a circular disc lying in xy plane with its centre at the origin (0,0,0). Find the potential at point (0,0,5)m

10.

Magnetic field intensity in free space is given by $\vec{H} = 20\left(xf_x + yf_y\right) / \left(x^2 + y^2\right) A/m$

Show that $\vec{\nabla}.\vec{\mathbf{B}} = 0$

<u>5</u> Find the current density \tilde{J} .

MMM.FilestRanke

4

c) Find the scalar vector potential $V_m(x, y, z)$ if $V_m = 0$ at P(1, 1, 1).

12. Can a static magnetic field exist in the interior of a perfect conductor? Explain.
Can a time varying magnetic filed exists in the interior

of a perfect conductor? Explain.

Man Files Bauxe.