

Printed Pages : 4	209/232	EEE-502/NEE-503
(Following Paper ID and Roll No. to be filled in your Answer Book)		
Paper ID : 121522/1	21503 Roll No.[

B.Tech.

(SEM. V) THEORY EXAMINATION, 2015-16

CONTROLSYSTEM

Time: 3 hours] [MaximumMarks: 100

Section-A

Note: Attempt all sections. All sections carry equal marks.

Write answer of each part in short. (2×10=20)

- Explain open loop and closed system with physical examples.
- (b) State the necessary & sufficient condition of Routh Hurwitz criterion.
- (c) Explain the significances of constant M & N circles.
- (d) What is the need of compensation in control system?
- (e) Draw the polar plot of open loop transfer function $\frac{1}{2}$.

11000

www.FirstRanke.

(1)

P.T.O.

1000

2

- EEE-502/NEE-503
- 11000
- ω

P.T.O

- What are state and state variables?
- Consider the system as shown in Fig Determine the value of 'a' such that the damping ratio is 0.5.

- (h) Define Rise time & Delay time for second order control system.
- Explain Mason's gain formula
- Define the term Centroid & Break Away point

Section-B

Note: Attempt any five questions of the following. (10×5=50)

diagram shown in Fig. below Determine the transfer function C(s)/R(s) for the block

- control system for under-damped Derive the expression for step response of second order
- Using Routh's stability criterion, determine the range of K open loop transfer function

$$G(s)H(s) = \frac{K}{s(s+1)(1+2s)}$$

Construct Root loci for open loop transfer function:

$$G(S)H(S) = \frac{K}{S(S+1)(S+3)}$$

- Derive expression for resonant frequency and resonant peak for second order control system.
- Sketch the Nyquist plot for the system with open loop transfer function

$$G(s)H(s) = \frac{60}{(s+1)(s+2)(s+5)}$$
 and comment on stability.

- Write short notes on PD controller and Synchros.
- Obtain state equation of a given transfer function"

b)
$$\frac{Y(s)}{U(s)} = \frac{1}{(s+1)(s+4)}$$

 $\frac{Y(s)}{U(s)} = \frac{1}{s^3 + 2s^2 + 3s + 1}$

Section-C

Note: Attempt any two questions of the following.

(15×2=30)

 For a unity feedback system, the open loop transfer function is

$$G(s)H(s)=\frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$$

Draw Bode Plot and determine gain margin, phase margin,

 ω_{gc} and ω_{pc} .

- 11. A system characterised by the transfer function
 - $\frac{Y(s)}{u(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}$ Find the state and output

equation in matrix from and also test the controllability and observability of the given system.

- 12. Write short notes of the following:
 - (a) Lead compensator
 - (b) Lag compensator
 - (c) Gain Margin and Phase Margin

---x---

11000

www.FiretRanke

(4)

EEE-502/NEE-503