

Printed Pages : 4	209/232	EEE-502/NEE-503
(Following Paper ID and Roll No. to be filled in your Answer Book)		
Paper ID : 121522/1	21503 Roll No.	
	D Took	•

(SEM. V) THEORY EXAMINATION, 2015-16 **CONTROL SYSTEM**

Time: 3 hours] [MaximumMarks: 100

Section-A

Note: Attempt all sections. All sections carry equal marks. Write answer of each part in short. $(2 \times 10 = 20)$

- Explain open loop and closed system with physical examples.
- (b) State the necessary & sufficient condition of Routh Hurwitz criterion.
- (c) Explain the significances of constant M & N circles.
- (d) What is the need of compensation in control system?
- (e) Draw the polar plot of open loop transfer function $\frac{1}{s^2}$.

11000

(1)

P.T.O.

- $\widehat{\Xi}$ What are state and state variables?
- **(9**) Consider the system as shown in Fig Determine the value of 'a' such that the damping ratio is 0.5.

- E Define Rise time & Delay time for second order control system.
- Ξ Explain Mason's gain formula.
- Define the term Centroid & Break Away point.

Section-B

Note: Attempt any five questions of the following $(10 \times 5 = 50)$

5 Determine the transfer function C(s)/R(s) for the block diagram shown in Fig. below

 ω Using Routh's stability criterion, determine the range control system for under-damped Derive the expression for step response of second order of K open loop transfer function

$$G(s)H(s) = \frac{K}{s(s+1)(1+2s)}$$

- Construct Root loci for open loop transfer function:
- $G(S)H(S) = \frac{K}{S(S+1)(S+3)}$
- Derive expression for resonant frequency and resonant peak for second order control system.

6.

- Sketch the Nyquist plot for the system with open loop transfer function
- $G(s)H(S) = \frac{3}{(s+1)(s+2)(s+5)}$ and comment on stability.

MMM.FilestRanke

- Write short notes on PD controller and Synchros.
- Obtain state equation of a given transfer function"

b)
$$\frac{Y(s)}{U(s)} = \frac{1}{(s+1)(s+4)}$$

a)

 $\frac{Y(s)}{U(s)} = \frac{1}{s^3 + 2s^2 + 3s + 1}$

b)
$$\frac{I(s)}{U(s)} = \frac{1}{(s+1)(s+4)}$$

11000

11000

2

EEE-502/NEE-503

Section-C

Note: Attempt any two questions of the following.

$$(15 \times 2 = 30)$$

10. For a unity feedback system, the open loop transfer function is

$$G(s)H(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$$

Draw Bode Plot and determine gain margin, phase margin,

$$\omega_{gc}$$
 and ω_{pc} .

- 11. A system characterised by the transfer function $\frac{Y(s)}{u(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}$ Find the state and output equation in matrix from and also test the controllability and observability of the given system.
- 12. Write short notes of the following:
 - (a) Lead compensator
 - (b) Lag compensator
 - (c) Gain Margin and Phase Margin

(4)

EEE-502/NEE-503

MANN FIRSTRANKS

11000