

www.FirstRanker.com

www.FirstRanker.com

	Printed Pages: 2 Paper Id: 130501		Sub Code:REC 051 Roll No.		
			B.TECH. THEORY EXAMINATION 2018		
Tin	ne: .	ANTEN 3 Hours	INA AND WAVE PROPAGATIO	N Total Marks: 70	
			f require any missing data; then cho		
			SECTION A		
1.		Attempt all questions is		2 x 7 = 14	
	a)		rdation potential take place?		
	b)	-	15 long if its loss resistance is 1.5 W. F	ind radiation resistance and	
	c)	efficiency? What is end-fire array and	broad-side array?		
		Define the gain of antenna Define virtual height and s			
	-	Estimate the distance & ef	fective aperture of a paraboloid reflector	or antenna required to	
	αJ	produce Null beam width of	of 10° at 3GHz. cy of a 1 m diameter loop of Normal diam	neter conner wire at 10MHz	
	Б)		. 2,	topper was at towns.	
•		Attempt only these of th	SECTION R	7-2-19	
2.	9)	Attempt any three of the	perture for a dipole antenna of lengt	$7 \times 3 = 21$ h 2cm at a 1.2 GHz What	
		will be the power receive	ed for an incident power density of	2mW/m².	
	D)	for the following length-	d vertical plane radiation pattern of - (i) 2 dipole (ii) 3 2 dipole (iii) 2	λ dipole	
	c)	What is folded dipole an	peration of parabolic dish? Why is	and explain its operation?	
		used?		్లన్లు `	
	e)	Explain the phenomenor under which duct propag	n of Duct Propogation. What are the gation can take place?	10hospheric conditions	
			SECTION C 3		
3.		Attempt any one part	of the following:	$7 \times 1 = 7$	
			mpedance and anterna temperature? any antenna is defined and what is ne antenna?		
4.		Attempt any one part	$\sim c^{N}$	7 x 1 = 7	
	a)	Explain the principle of	of partern multiplication. Obtain t	he radiation pattern of 4	
	b)		aced \$\sqrt{2}\ apart using pattern multipl urces? N-isotropic sources are arra- sion for the array factor?		
5.		Attempt any one part	of the following:	7 x 1 = 7	
	a)		y consists of four equal isotropic in		
	b)	\(\lambda\)2 spacing. Find the directivity, BWFN and HPBW of the array? An end fire array consisting of several half wavelength isotropic radiators has a directive gain of 30. Find the array length and width of the major lobe. What will be the value for broadside array?			
		the value for broadside a	array:	1 Page	
			MANISH KUMAR JHA 1	1-Dec-2018 13:29:55 117.55	
		•		•	
		•			
		÷	·		
		÷.	·		

www.FirstRanker.com

www.FirstRanker.com

6. Attempt any one part of the following:

a) Explain with suitable diagram log periodic antenna? What are practical application of these antenna?

b) A loop antenna consists of 10 turns, each having an area of 1 m². A radio wave having a frequency of 1 MHz induces a sinusoidal emf of 100 mV(rms) in this antenna when it is oriented for maximum response. Calculate the peak value of the magnetic field intensity of the RF wave. (μ₀=4πx10⁻⁷h/m)

7. Attempt any one part of the following:

7 x 1 = 7

a) Assume that reflection take place at a height of 350km & that the maximum density in the ionosphere corresponds to a 0.8 refractive index at 15 MHz what will be range for which the MUF is 20MHz. Assume flat Earth.

b) Derive expression for refractive index of ionosphere $\mu = \sqrt{1 - \frac{81N}{f^2}}$

MANISH KUMAR JHA 11. Dec. 2018 13:29:55 1,77:55:242.131

2 | Page

MANISH KUMAR JHA | 11-Dec-2018 13:29:55 | 117.55.242.131

WWW.FirstPanke