Printed Pages:

EEC-013

(Following Paper ID and Roll No. to be filled in your	
Answer Books)	
Paper ID: 131653	Roll No.

B.TECH.

Theory Examination (Semester-VI) 2015-16

ADVANCED SEMICONDUCTOR DEVICES

Max, Marks: 100 Time: 3 Hours

Section-A

- Attempt all parts. All parts carry equal marks. Write 1. answer of each part in short. $(2 \times 10 = 20)$
 - The Si energy gap changes monotonically with tempera-(a) ture. What is the basic concept behind this?
 - Draw the energy level diagram of a PN junction.
 - How a junction barrier is developed across an unbiased junction?
 - Make the energy band diagram of a metal and semicon-(d) ductor junction at equilibrium. Consider Al metal having a large work function and n-type semiconductor.

(1) P.T.O.

- (e) Why does current saturate in long channel MOSFET when large drain voltage is applied on drain?
- (f) A pn junction photodiode is operated under photovoltaic condition similar to solar cell and having the similar I-V Characteristics. under illumination. State three major differences between photodiode and solar cell.
- (g) What is kinetic energy of a hole at the top of the valence band?
- (h) Define minority carrier life time.
- (i) What are the different types of degenerate Semiconductors?
- (j) What is meant by IMPATT diode?

Section-B

- Attempt any five questions from this section. (10×5=50)
 - (a) (i) Explain the recombination of excess carriers in semiconductors. Derive an expression for excess carrier lifetime.
 - (ii) Derive an expression for hole and electron diffusion current.

1 (2) P.T.O.

- (b) Prove that for a linearly graded PN junction the maximum electric field in depletion region is 3/2 times of average electric field.
- (c) Derive the current expression for long base ideal diode.
- (d) Write down the different methods to calculate the barrier height of a Schottky barrier diode.
- (e) Explain the formation of rectifying M-S contact barrier process using Schottky-Mott theory.
- (f) Derive an expression for a saturated drain current of a n-channel MESFET.
- (g) Explain the principle of operation, storage and transfer of charge in basic charge coupled device (CCD).
- (h) Derive an expression for power output and efficiency of a MSM BAITT diode.

Section-C

Attempt any two questions from this section. $(15\times2=30)$

 The donor and acceptor concentration in Si sample is 6×10¹⁵ and 2×10¹⁵ cm⁻³ respectively. Determine the position of Fermi

1 (3) P.T.O.

Level with recpect to intrinsic energy level Ei at room temperature. Also find out the value and sign of Hall coefficient.

- Explain the MESGET operation in case of Depletion mode and enhancement mode device. Draw the I-V characteristic also.
- A hetero-junction is formed between n-type Ge (with Nd=1.5×10¹⁶ cm⁻³) and p-type GaAs-(with Na=8.5×10¹⁵ cm³).
 - Draw the thermal equilibrium energy band diagram of junction.
 - Calculate the buit-in voltage of the junction.