B.TECH.

THEORY EXAMINATION (SEM-VI) 2016-17
 COMPILER DESIGN

Time : 3 Hours
Max. Marks : 100
Note : Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

1. Attempt the following:
$10 \times 2=20$
(a) State any two reasons as to why phases of compiler should be grouped.
(b) Write regular expression to describe a language consist of strings made of even numbers a \& b.
(c) Write a CF grammar to represent palindrome.
(d) Why are quadruples preferred over triples in an optimizing compiler?
(e) Give syntax directed translation for case statement.
(f) What is a syntax tree? Draw the syntax tree for the following statement: c b c ba-*+ - * =
(g) How to perform register assignment for outer loops?
(h) List out the criteria for code improving transformations.
(i) Represent the following in flow graph $\mathrm{i}=1$;sum=0; while ($\mathrm{i}<=10$) \{sum+=i;i++\}
(j) What is the use of algebraic identities in optimization of basic blocks?

SECTION - B

2. Attempt any five of the following questions:
(a) Explain in detail the process of compilation. Illustrate the output of each phase of compilation of the input " $a=(b+c) *(b+c) * 2 "$..
(b) Construct the minimized DFA for the regular expression $(0+1)^{*}(0+1) 10$.
(c) What is an ambiguous grammar? Is the following grammar ambiguous? Prove $\mathrm{EE}+|\mathrm{E}(\mathrm{E})|$ id.The grammar should be moved to the next line ,centered.
(d) Draw NFA for the regular expression $a b * / a b$.
(e) How names can be looked up in the symbol table? Discuss.
(f) Write an algorithm to partition a sequence of three address statements into basic blocks.
(g) Discuss in detail the process of optimization of basic blocks. Give an example
(h) How to subdivide a run-time memory into code and data areas. Explain

SECTION - C

Attempt any two of the following questions:
3 Consider the following grammar
S-AS|b
A-SA|a.
Construct the SLR parse table for the grammar. Show the actions of the parser for the input string "abab".
4 How would you convert the following into intermediate code? Give a suitable example. i) Assignment Statements. ii) Case Statements

5 Define a directed acyclic graph. Construct a DAG and write the sequence of instructions for the expression $a+a *(b-c)+(b-c) * d$.

