

www.FirstRanker.com

www.FirstRanker.com

(10x1 = 10)

Printed pages:												Sub Code: NEN-701																				
[2]0[4]0]								Roll No:										_	\top	\top	Т	Т	\neg									
	Pap	per l	ld:	_	Ů	_							•																			
	B TECH (SEM 7) THEORY EXAMINATION 2017-18 ELECTRIC DRIVES																															
Time: 3 Hours															То	tal .	Mar	ks:	16	00												
Not	e:									equir mark	ed any	y mis			ta; th		ho	ose s	uital	bly												
1.		Atte	emp	t al	l que	estic	on	in l	rief.													(2x10=20)										
	a) b) c) d) e) f) j)	Def Wh Wh How Wh Wri Wh	ine at is	va mo ou c int am ifor	n dy lue o eant an c erm e pla mati	nan of sl by o han itter ite o ion by l	nic lip cla ge nt p det we	wh sse sp peri ail ge	s of o ced o odic of 3 p t from g tim	otor i luty of f sepo Duty phase in france on cor	is at st of mot arately of me induce me sizustant etive l	tor. y excapilities achie ction ze of of n	ine? n mo f mo	d de otor. otor. or? ques.	Y	or.	-3	317														
2.											owing		3	7.0													(10	x3=	30)			
		Exp Exp Driv Des	lair lair ve e scrib	pli pli xpr	gene iggi essi our o	rati ng f on e quad	ve for ne fra	bra sep rgy int o	king arate cons pera	for sely ex sump tion (eparately eparatected tion E of moted	DC E = 0 tor for	mot not 0.5 Je for h	ited l tor w _o ² o ioist	DC r on no load	motor	d d											arly	the d	lirect	tion of	
														SE	CTI	ON	-C															
3.		Atto	emp	t ar	y or	ne p	art	ts o	f the	follo	wing															(1	10x1	l =1	0)			
	a)	A d	rive	ha	s the	fol	llo	win	g pai	amet	ters. T	Γ = 1	150-0	0.1N	I, N-	m, w	he	re N	is th	ic s	spec	ed i	in rr	m. I	oac	d to	orqu	ie T	= 10	00, N	I -	

FirstRanker.com

4.

Calculate initial and final equilibrium speeds.
b) Explain different type of braking of induction motor

Attempt any one parts of the following

a) Drive expression energy consumption $E = 0.5 \text{ Jw}_0^2$ on no load during starting of dc motor.

m initially the drive is operating in steady state. The characteristics of load torque are changed to T1 = -100, N-m.

www.FirstRanker.com

www.FirstRanker.com

- b) A 220 V, 970 rpm, 100 A dc separately excited motor has an armature resistance of 0.05 ohms. It is broken by plugging from an initial speed of 1000 rpm. calculate
 - Value of resistance to be placed in armature circuit to limit braking current to twice the full load value.
 - b. braking torque
- Attempt any one parts of the following

(10x1 = 10)

- a) What are components of load torque and explain each .
- b) Draw the block diagram of an electric drive. Explain the function of each.
- 6. Attempt any one parts of the following

(10x1 = 10)

- a) What are the reasons for using load equalization in an electrical drives?
- b) A rolling mill driven by thyristors converter –fed dc motor operates on a speed reversing duty cycle. Motor field current is maintained constant at the rated value. Moment of inertia referred to the motor shaft is 10000 kg-m². Find torque during speed reversal from 200 to -200 rpm in 5 sec.
- Attempt any one parts of the following

(10x1 = 10)

- a) Derive the thermal model of motor for heating and cooling.
- b) A 220 volt , 200 A , 800 rpm dc separately excited motor has an armature resistance of $0.06~\Omega$. The motor armature is fed from a variable voltage source with an internal resistance of $0.04~\Omega$. calculate internal voltage of the variable voltage source when motor is operating in regenerative braking at 80% of rated motor torque and 600 rpm .

