

www.FirstRanker.com

www.FirstRanker.com

Printed Pages: 3	Pages: 3				NEC031						
Paper Id 1 3 0 8 1 9	Roll No.	Τ									

B. TECH (SEM-VII) THEORY EXAMINATION 2018-19

INFORMATION THEORY AND CODING Max. Marks: 100 Time: 3 Hours

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided

SECTION - A

1. Attempt all parts of the following questions:

2×10=20

- (a) What is Entropy? List the properties of Entropy.
- (b) What is the minimum value of $(p_1, p_2, p_3, ..., p_n) = H(p)$ as p ranges over the set of ndimensional probability vector? Find all p's that which achieve this minimum.
- (c) State Log-sum inequality.
- (d) Define typical set and write its properties.
- (e) Write the consequences of AEP.
- (f) State Source Coding theorem.
- (g) Show that the expected length L of any instantaneous D-ary code for a random variable X is greater than or equal to the entropy $H_D(X)$, that is $L \ge H_D(X)$, with equality if and only if $D^{-l_i} = p_i$.
- (h) What do you mean by Binary symmetric channel?
- (i) Differentiate between block codes and covolutional codes.
- (j) Given the (5, 4) even parity block code. Find the codewords corresponding to $i_1 =$ (1011) and $i_2 = (1010)$?

SECTION B

2. Attempt any three parts of the following questions:

3×10=30

(a) For the systematic (6,3) code with

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Detect and correct the single error that occurred due to noise. Draw its syndrome calculation circuit.

- (b) Explain soft-decision decoding with example. Also give benefits of soft decoding.
- (c) What is channel? Classify channels into different groups. Explain each type briefly and also calculate the channel capacity of each type.
- (d) Find the (a) binary and (b) ternary Huffman codes for the random variable X with probabilities $p=(\frac{1}{21},\frac{2}{21},\frac{3}{21},\frac{4}{21},\frac{5}{21},\frac{6}{21})$. Also calculate $L=\sum p_i l_i$ in each case.

www.FirstRanker

www.FirstRanker.com

www.FirstRanker.com

- (e) The convolutional encoder has the following two generator sequences each of length 3(the same as the constraint length K=3):
 - 1) Input-top adder output path

$$\left(g_0^{(1)}, g_1^{(1)}, g_2^{(1)}\right) = (1, 1, 1)$$

2) Input-bottom adder output path

$$\left(g_0^{(2)}, g_1^{(2)}, g_2^{(2)}\right) = (1, 0, 1)$$

The impulse response of either input-output path of the encoder is the same as the corresponding sequence of connections from the shift register to the pertinent adder, with a '1' representing a connection and a '0' representing no connection.

Find the following:-

- (i) Draw the encoder diagram
- (ii) Top and bottom output sequences for input sequence 10011.
- Find the codeword for input message sequence 10011 using transform domain approach.

SECTION C

Attempt any one part of the following question:

1×10=10

- (a) What do you mean by relative entropy and mutual information? State the properties of relative entropy and mutual information.
 - (b) Given a binary channel shown in the figure below:

- (i) Find the channel transition matrix.
- (ii) Find $P(y_1)$ and $P(y_2)$ when $P(x_1)=P(x_2)=0.5$.
- (iii) Calculate H(X), H(Y), H(Y/X), H(X/Y) and I(X; Y).

Attempt any one part of the following question:

1×10=10

- 4. (a) State and prove Channel coding theorem.
 - (b) For the (6, 3) Hamming code, the parity check matrix H is given by

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- (i) Construct the generator matrix.
- (ii) Determine the codeword that begins with 110

www.FirstRanke