
6) The energy changes involving the core electrons of an atom or molecule are expressed in which region of the electromagnetic spectrum? [Question ID = 742]

1. Ultraviolet and Visible region [Option ID $=2967$]
2. X-ray region [Option ID = 2968]
3. Radiofrequency region [Option ID $=2966$]
4. Infra-red region [Option ID = 2965]

Correct Answer :-

- X-ray region [Option ID $=2968]$

7) Find out the expected intensity ratio of M and $M+1$ signal for the Naphthalene molecular ion [Question ID $=726$]
1. 99:1.1 [Option ID = 2903]
2. 1.1:99 [Option ID = 2904]
3. 9:01 [Option ID = 2901]
4. 1:9 [Option ID = 2902]

Correct Answer :-

- 9:01 [Option ID = 2901]

8) Cobalt-60 is used in radiation therapy of cancer and can be produced by the bombardment of Cobalt-59 with [Question ID $=692$]
1. Alpha particles [Option ID $=2765$]
2. Beta particles [Option ID $=2767$]
3. Neutrons [Option ID $=2766$]
4. Gamma rays [Option ID = 2768]

Correct Answer :-

- Neutrons [Option ID $=2766$]

9) The standard emf of galvanic cell involving 3 moles of electrons in its redox reaction is 0.59 V . The equilibrium constant for the reaction of the cell is- [Question ID = 763]
10^{15}
[Option ID = 3051]
10^{30}
10^{25}
Option ID = 3049]
10^{20}
[Option ID = 3050]
Correct Answer :-
10^{30}
[Option ID = 3052]
10) A characteristic common to polymers that can be made to conduct electricity such as polyacetylene, polypyrrole is: [Question ID = 685]
1. Conjugation throughout the polymeric chain. [Option ID $=2740$]
2. A high degree of cross linking [Option ID = 2738]
3. A very low glass transition temperature [Option ID = 2737]
4. Presence of stereogenic centers of the same configuration [Option ID $=2739$]

Correct Answer :-

- Conjugation throughout the polymeric chain. [Option ID $=2740$]

11) Impact factor is [Question ID $=768$]
1. Ratio between citations and recent citable items publish [Option ID $=3071$]
2. All of these [Option ID = 3072]
3. Addition of citations and recent citable items publish [Option ID = 3069]
4. Ratio between recent citable items publish and citations [Option ID $=3070$]

Correct Answer :-

- Ratio between recent citable items publish and citations [Option ID $=3070$]

```
Al(s)}+3\mp@subsup{\textrm{NaNO}}{3}{}(\textrm{aq})->3\textrm{Na}(\textrm{s})+\textrm{Al}(\mp@subsup{\textrm{NO}}{3}{}\mp@subsup{)}{3}{}(\textrm{aq}
Ca(s)}+2\mp@subsup{\textrm{NaNO}}{3}{}(\textrm{aq})->2\textrm{Na}(\textrm{s})+\textrm{Ca}(\mp@subsup{\textrm{NO}}{3}{}\mp@subsup{)}{2}{}(\textrm{aq}
Option ID = 2772]
Pb(s)}+2\mp@subsup{\textrm{LiNO}}{3}{}(\textrm{aq})->2\textrm{Li}(\textrm{s})+\textrm{Pb}(\mp@subsup{\textrm{NO}}{3}{}\mp@subsup{)}{2}{}(\textrm{aq}
Zn(s)}+2\mp@subsup{\textrm{AgNO}}{3}{}(\textrm{aq})->2\textrm{Ag}(\textrm{s})+\textrm{Zn}(\mp@subsup{\textrm{NO}}{3}{}\mp@subsup{)}{2}{}(\textrm{aq}
[Option ID = 2769]
Correct Answer :
    Zn(s) +2AgNO
[Option ID = 2769]
```

```
13) How many diastereoisomers are possible for the compound 2,4 -diphenylcyclobutane-1,3 di carboxylic acids. [Question ID = 725]
. }6\mathrm{ [Option ID = 2899]
2. 5 [Option ID = 2898]
3.8[Option ID = 2900]
4. }4\mathrm{ [Option ID = 2897]
Correct Answer :-
- 5 [Option ID = 2898]
```

14) An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to- [Question ID = 764]
. increase in ionic mobility of ions [Option ID = 3055]
2. increase in number of ions [Option ID $=3054$]
3. 100% ionization of electrolyte at normal dilution [Option ID $=3056$]
4. increase in both i.e. number of ions and ionic mobility of ions. [Option ID = 3053]
```
Correct Answer :-
```

- increase in ionic mobility of ions [Option ID = 3055]

15) The solid state structures of the principal allotropes of elemental boron are made up of which of the following structural units [Question ID = 699]
B_{4} terahedra
[Option ID $=2796]$
B6 octahedra
[Option ID = 2795]
B_{8} cubes [Option ID $=2794]$
B_{12} icosahedra
[Option ID = 2793]

Correct Answer:

B_{12} icosahedra
[Option ID = 2793]
16) The molecular geometry of thionyl chloride is best described as [Question ID =688]

1. T-shaped [Option ID $=2752$]
2. Tetrahedral [Option ID $=2751$]
3. Trigonal pyramidal [Option ID $=2749$]
4. Trigonal planar [Option ID $=2750$]

Correct Answer :-

- Trigonal pyramidal [Option ID $=2749$]

17) In a face-center cubic (FCC) type of crystal lattice, the number of atoms belonging exclusively to each unit cell within the lattice is/are: [Question ID = 754]
1. 2 [Option ID $=3014]$
2. 1 [Option ID $=3013$]
3. 3 [Option ID $=3015$]
4. 4 [Option ID $=3016$]

[^0]18) Among the following, the weakest oxidizing agent is [Question ID = 675]

```
Mg (s) Option ID = 2098
I
H+
MnO44
[Option ID = 2697]
```


Correct Answer :-

- $\mathrm{Mg}(\mathrm{s})$ [Option ID $=2698]$

19) For a polymer, which of the following statement/s is/are true? [Question ID = 759]
1. Weight average molecular weight is almost always higher than the number average molecular weight [Option ID $=3035$]
2. Formation of a polypeptide from its monomers (amino acids) is an example of addition polymerization [Option ID = 3034]
3. All of these [Option ID $=3036$]
4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033]

Correct Answer :-

- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID $=3035$]

```
20) Quantum dots are [Question ID = 762]
1. Three dimensional [Option ID = 3048]
2. One dimensional [Option ID = 3046]
3. Two dimensional [Option ID = 3047]
4. Zero dimensional [Option ID = 3045]
Correct Answer :-
- Zero dimensional [Option ID = 3045]
21) The unit of rate constant for a third order reaction is: [Question ID = 749]
    s-1
    mol
    mol-2 dm
moldm-3 S-1
    [Option ID = 2994]
```

Correct Answer :-
$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
[Option ID = 2996]
22) All the following elements have at least one isotope that is not radioactive EXCEPT [Question ID = 673]

1. Pb [Option ID $=2690$]
2. O [Option ID = 2689]
3. Sn [Option ID $=2691$]
4. No [Option ID = 2692]

Correct Answer :-

- No [Option ID = 2692]

23) The conditions for a species to follow Bose-Einstein statistics are; [Question ID = 736]
1. Particles are indistinguishable, with no restriction on filling up of energy levels [Option ID = 2944]
2. Particles are indistinguishable, with a restriction on filling up of energy levels [Option ID $=2943$]
3. Particles are distinguishable, with a restriction on filling up of energy levels [Option ID $=2941$]
4. Particles are distinguishable, with no restriction on filling up of energy levels [Option ID $=2942$]

Correct Answer :-

- Particles are indistinguishable, with no restriction on filling up of energy levels [Option ID = 2944]

24) In the kinetic theory of collisions, the SI unit of collision number, in terms of m (meter) and s (second), is:
[^1]```
1. m-2 s-1}[Option ID = 3042]
2. m4}\mp@subsup{\textrm{s}}{}{-1}[\mathrm{ [Option ID = 3041]
3. m}\mp@subsup{}{2}{2}\mp@subsup{\textrm{s}}{}{-1}[\mathrm{ [Option ID = 3043]
4. None of these [Option ID = 3044]
```

Correct Answer :-

- None of these [Option ID = 3044]

25) Correct characteristics of the functional groups of adenine in DNA base pair are [Question ID = 706]

Both $\mathrm{N}(3)$ and $\mathrm{C}(6) \mathrm{NH}_{2}$ are hydrogen bond donors.
$\mathrm{N}(3)$ is a hydrogen bond acceptor and $\mathrm{C}(6) \mathrm{NH}_{2}$ is a hydrogen bond donor.
Both $\mathrm{N}(3)$ and $\mathrm{C}(6) \mathrm{NH}_{2}$ are hydrogen bond acceptors
[Option ID = 2823]
$\mathrm{N}(1)$ is a hydrogen bond acceptor and $\mathrm{C}(6) \mathrm{NH}_{2}$ is a hydrogen bond donor.

## Correct Answer :-

$\mathrm{N}(1)$ is a hydrogen bond acceptor and $\mathrm{C}(6) \mathrm{NH}_{2}$ is a hydrogen bond donor.
26) The carbon monoxide molecule has an internuclear distance of 1.13 Angstroms. What is the moment of Inertia of this molecule?
[Question ID = 740]
$21.6 \times 10^{-47} \mathrm{kgm}^{2}$
[Option ID = 2960]
$14.5 \times 10^{-47} \mathrm{kgm}^{2}$
[Option ID $=2957]$
$14.5 \times 10^{47} \mathrm{kgm}^{2}$
[Option ID = 2958]
$1.45{\mathrm{X} 10^{-47} \mathrm{kgm}^{2}}$
[Option ID = 2959]

```
Correct Answer :-
 14.5 X 10-47 kgm2
```

27) Which of the following represent/s non-linear optical technique? [Question ID = 744]
1. Second Harmonic generation [Option ID $=2974$ ]
2. Two-photon photoluminescence [Option ID $=2975$ ]
3. Four-wave mixing [Option ID $=2973$ ]
4. All of these [Option ID = 2976]

Correct Answer :-

- All of these [Option ID = 2976]
28). Which of the following does not affect the intensity of spectral lines of a sample? [Question ID = 743]

1. Path length of a sample [Option ID $=2972$ ]
2. Population of energy states [Option ID $=2970$ ]
3. Heisenberg's Uncertainty principle [Option ID $=2971$ ]
4. Concentration of a sample [Option ID = 2969]

Correct Answer :-

- Heisenberg's Uncertainty principle [Option ID = 2971]

29) Find out the major product of the following reaction


[^2]
[Option ID = 2862]

2.

[Option ID = 2861]

[Option ID = 2864]
Correct Answer :-

[Option ID = 2864]
30)

Provide the suitable reagents for this conversion:

[Question ID = 712]

```
\(\mathrm{NaNO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{PCl}_{3}\)
[Option ID = 2845]
\(\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}, \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{PCl}_{3}\)
Option ID \(=2846]\)
\(\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{POCl}_{3}\)
m-CPBA, \(\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{PCl}_{3}\)
[Option ID = 2847]
```

Correct Answer :-
m-CPBA, $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{PCl}_{3}$
31) Which of the following complexes does not contain a significant $\pi$ component in the metalligand bonding?
[Question ID = 686]
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
[Option ID = 2743]
${ }^{\prime}\left[\mathrm{Cr}\left(\eta-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]$
[Option ID = 2742]
$\left[\mathrm{Co}(\mathrm{CN})_{3}\right]^{3-}$
$\left[\mathrm{Fe}(\mathrm{CO})_{s}\right]$

```
[Option ID = 2744]
```

Correct Answer :-
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

```
[Option ID = 2743]
```

32) The product obtained in the following conversion is:

[Question ID = 5633]

[Option ID = 22523]

[Option ID $=22524]$

[Option ID = 22526]

[Option ID = 22525]

Correct Answer :-

[Option ID $=22523$ ]
33) In the multi-step synthesis given below, the overall yield for the formation of $S$
from $P$ is:

$$
P \xrightarrow{90 \%} \mathrm{Q}^{80 \%} \xrightarrow{\mathrm{R} 50 \%} \mathrm{~S}
$$

[Question ID = 730]

```
 40%
 .[Option ID = 2918]
50%
 72%
4. 36 %
```



```
[Option ID = 2919]
```

34) 

The compound formed in the following reaction is:

[Question ID = 714]

[Option ID $=2856$ ]

[Option ID = 2853]
 [Option ID = 2855]

[Option ID = 2854]

Correct Answer :-

[Option ID = 2854]
35) A 499 mg sample of $\mathrm{CuSO}_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$ is heated to drive off the waters of hydration and then reweighed to give a final mass of 319 mg . Given the sample contains 2.0 mmol of Cu , what is the average number of waters of hydration, n in $\mathrm{CuSO}_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$ ?
[Question ID = 669]

1. 2 [Option ID $=2673]$
2. 18 [Option ID $=2676]$
3. 5 [Option ID $=2674$ ]
4. 10 [Option ID $=2675$ ]

Correct Answer :-

- 5 [Option ID = 2674]

36) What is the orbital angular momentum quantum number $l$ of the electron that is most easily removed when ground state aluminium is ionized?
[^3]1. 2 [Option ID $=2754]$

## 4. 3 [Option ID $=2753$ ]

Correct Answer :-

- 1 [Option ID $=2755]$

37) The major product obtained in the following reaction is:

[Question ID = 718]

1. C)
[Option ID = 2871]

2. B)
[Option ID = 2870]

3. A)
[Option ID = 2869]
4. D ) both $(\mathrm{B})$ and $(C)$ [Option ID $=2872$ ]

Correct Answer :-


- A)
[Option ID = 2869]

38) 

Predict the major product:

[Question ID = 709]

[Option ID $=2836$ ]

[Option ID = 2833]

[Option ID = 2835]


Correct Answer :-

[Option ID = 2836]
${ }^{39)}$ The IUPAC name of the compound given below is:

[Question ID = 705]

1. $(2 Z, 4 Z)$-3-chlorohexa-2, 4-diene-1,6-diol. [Option ID $=2819]$
2. $(2 \mathrm{E}, 4 \mathrm{E})$-3-chlorohexa-2, 4-diene-1,6-diol. [Option ID $=2817]$
3. $(2 Z, 4 E)$-3-chlorohexa-2, 4-diene-1,6-diol. [Option ID $=2818$ ]
4. $(2 Z, 4 E)$-3-chlorohexa-2, 4-diene-1,6-diol. [Option ID $=2820$ ]

Correct Answer :-

- (2Z, 4E)-3-chlorohexa-2, 4-diene-1,6-diol. [Option ID $=2820$ ]

40) Which of the following statements about complexes that form between metals $\mathrm{M}^{\mathrm{n}+}$ and EDTA in aqueous solutions is true?
[Question ID = 680]
1. The presence of other complexing ligands in solution affects the equilibrium concentration of metal-EDTA complexes [Option $\operatorname{ID}=2719$ ]
2. Metal-EDTA complexes have an equilibrium concentration independent of pH [Option ID $=2718$ ]
3. Metal-EDTA complexes are often $2: 1$ in stoichiometry [Option ID $=2717$ ]
4. Metal-EDTA complexes are less stable than the corresponding metal-ammine complexes [Option ID $=2720$ ]

Correct Answer :-

- The presence of other complexing ligands in solution affects the equilibrium concentration of metal-EDTA complexes [Option ID = 2719]

41) A 0.600 g sample of pure, weak diprotic acid gives end points at 20.0 mL and 40.0 mL when titrated with 0.100 M NaOH . What is the molar mass of the weak acid?
[Question ID = 671]
1. 150 g [Option ID $=2682]$
2. 300 g [Option ID $=2684$ ]
3. 120 g [Option ID $=2681$ ]
4. 180 g [Option ID $=2683$ ]

Correct Answer :-

- 300 g [Option ID $=2684$ ]

42) The microwave spectrum of a rigid diatomic molecule shows first three lines at 2.65682 cm -
${ }^{1}, 5.31364 \mathrm{~cm}^{-1}$, and $7.97046 \mathrm{~cm}^{-1}$. What is the rotational constant of this molecule?
[Question ID = 756]

| $1.82118 \mathrm{~cm}^{-1}$ | [Option ID $=3021$ ] |
| :--- | :--- |
| $3.64236 \mathrm{~cm}^{-1}$ | [Option ID $=3022]$ |
| $1.32841 \mathrm{~cm}^{-1}$ | [Option ID $=3024]$ |
| $0.91059 \mathrm{~cm}^{-1}$ |  |

$1.32841 \mathrm{~cm}^{-1}$
43) It takes 10 minutes for the concentration of a radioactive species to decay to its $1 / 4^{\text {th }}$ value of its original concentration. What is the rate constant of this radioactive decay reaction?
[Question ID = 750]
$415.8 \mathrm{~s}^{-1}$
[Option ID = 2999]
$865.8 \mathrm{~s}^{-1}$
[Option ID = 3000]
$0.00231 \mathrm{~s}^{-1}$
[Option ID = 2997]
$0.001155 \mathrm{~s}^{-1}$
[Option ID = 2998]
Correct Answer :-
$0.00231 \mathrm{~s}^{-1}$
[Option ID = 2997]
44)

The major product in the following reaction is:

[Question ID = 715]

[Option ID = 2857]

[Option ID $=2860$ ]

3.
[Option ID = 2858]

[Option ID = 2859]
Correct Answer :-

[Option ID $=2860]$

The product obtained in the following reaction is

[Question ID = 719]

[Option ID = 2873]

2. [Option ID $=2876]$

3. [Option ID $=2874]$

[Option ID = 2875]
Correct Answer :-
46) $\mathrm{PbF}_{2}(\mathrm{~s})$ which is slightly soluble in water is dissolved in water to form a standard solution in equilibrium with solid $\mathrm{PbF}_{2}$. Which of the following will cause additional $\mathrm{PbF}_{2}$ (s) to dissolve?

```
[Question ID = 674]
Adding solid \(\mathrm{PbF}_{2}\)
[Option ID = 2695]
Adding \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\)
[Option ID = 2694]
Adding \(\mathrm{HNO}_{3}\)
[Option ID = 2693]
```

1. Evaporating some water to decrease the volume of the solution. [Option ID $=2696$ ]

## Correct Answer :-

Adding $\mathrm{HNO}_{3}$

```
[Option ID = 2693]
```

47) Arrange the following intermediates in the order of decreasing basicity (strongest to weakest):
(i) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}^{-}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$
(iv) $\mathrm{HC} \equiv^{-}$
[Question ID = 728]
iii $>\mathrm{ii}>\mathrm{i}>\mathrm{iv}$
iii $>$ iv $>\mathrm{i}>\mathrm{ii}$
[Option ID = 2910]
[Option ID = 2911]
iv $>\mathrm{i}>\mathrm{ii}>\mathrm{iii}$
[Option ID = 2909]
ii $>\mathrm{i}>\mathrm{iv}>\mathrm{iii}$

Correct Answer :
ii $>$ i $>$ iv $>$ iii
[Option ID = 2912]
48) For EDTA titrations, the analyte solution and the titrant solution are both buffered at the same pH for which of the following reasons:
I. Conditional formation constant is affected by pH .
II. The fraction of EDTA in the fully deprotonated $\mathrm{Y}^{4-}$ form varies with pH .
III. When EDTA is complexed with metal ions, $\mathrm{H}^{+}$ions are formed as product.

```
[Question ID = 697]
```

1. III only [Option ID $=2788$ ]
2. II only [Option ID $=2787$ ]
3. I only [Option ID $=2785$ ]
4. I, II and III [Option ID = 2786]

## Correct Answer :-

- I, II and III [Option ID = 2786]

49) When $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is dissolved in $6 \mathrm{M} \mathrm{HNO}_{3}$, which iron containing species dominate in the solution?
[Question ID = 700]
$\mathrm{Fe}(\mathrm{OH})_{3}$
[Option ID = 2798]
$\mathrm{Fe}(\mathrm{OH})_{4}{ }^{-}$
[Option ID = 2797]
$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{3+}$
$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{2+}$
Option ID = 2800]
[Option ID = 2799]

## Correct Answer :

$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{2+}$
[Option ID = 2799]
50) In $\mathrm{CrF}_{2}(\mathrm{~s})$, the coordination of six $\mathrm{F}^{-}$, around the Cr is a distorted octahedron with four short and two long Cr-F bonds. Which of the following best explains this observation?
[Question ID = 678]

1. $\mathrm{Cr}^{2+}$ has a low cationic charge [Option ID $=2711$ ]
2. F has -1 anionic charge and highly electronegative [Option $\mathrm{ID}=2709$ ]
3. Spin-orbit coupling in $\mathrm{Cr}^{2+}$ [Option ID $=2712$ ]
4. The Jahn-Teller effect [Option ID $=2710$ ]

## Correct Answer :-

- The Jahn-Teller effect [Option ID $=2710$ ]
${ }^{51)}$ The major product formed in the following reaction is:

[Question ID = 723]
$\qquad$
[Option ID = 2889]

[Option ID = 2890]

[Option ID $=2891$ ]

[Option ID = 2892]


## Correct Answer :-

$\mathrm{MeO}_{2} \mathrm{C}$,

[Option ID = 2889]
52) The compound showing the following spectral characteristic is ${ }^{1} \mathrm{H}$ NMR ( $\delta$ in ppm$): 4.65(2 \mathrm{H}$, singlet), $3.65\left(4 \mathrm{H}\right.$, quartet), $1.25\left(6 \mathrm{H}\right.$, triplet) $;{ }^{13} \mathrm{CNMR}(\delta$ in ppm $)=15,63,95$; DEPT- $135(\delta$ in ppm ) : 15 (positive), 63 (negative), 95 (negative); DEPT-90 ( $\delta$ in ppm): 15 (no peak), 63 (no peak), 95 (no peak).
[Question ID = 727]
 [Option ID = 2907]


[Option ID $=2905]$

4. [Option ID $=2908$ ]

## Correct Answer :-


[Option ID = 2905]
53) In low chloride ion concentration, the anticancer drug cis-platin hydrolysis to give a diaqua complex and this binds to DNA via adjacent guanine.


The coordinating atom of guanine to $\mathrm{Pt}(\mathrm{II})$ is

```
1. N9 [Option ID = 2828]
2. N7 [Option ID = 2827]
3. N1 [Option ID = 2825]
4. N3 [Option ID = 2826]
```

Correct Answer :-

- N7 [Option ID = 2827]

54) The molecular geometry of $\mathrm{IF}_{5}$ is
[Question ID = 672]
1. Bicapped prism [Option ID $=2688$ ]
2. Square pyramidal [Option ID $=2686$ ]
3. Trigonal planar [Option ID $=2685$ ]
4. Bent [Option ID $=2687$ ]

Correct Answer :-

- Square pyramidal [Option ID $=2686$ ]
${ }^{55)}$ What is the principal product of the following reaction?

[Question ID = 704]

[Option ID = 2816]


Option ID = 2814]

3.

4.
[Option ID = 2815]

## Correct Answer :-


[Option ID = 2813]
56) The major product of the reaction given below is:

Li/liq. $\mathrm{NH}_{3}$
[Question ID = 708]

[Option ID $=2829$ ]

[Option ID = 2832]

[Option ID = 2831]

[Option ID $=2830$ ]

## Correct Answer :-


[Option ID = 2831]
57) The product obtained in the following conversion is:

[Question ID = 717]

[Option ID = 2866]


[Option ID $=2865]$

[Option ID = 2867]

[Option ID = 2868]

## Correct Answer :-


[Option ID = 2866]

The major product in the following reaction is:

[Question ID = 711]


[Option ID = 2843]

[Option ID $=2842$ ]

3.

4. [Option ID $=2841$ ]

Correct Answer :-

${ }^{59)}$ The product obtained in the following conversion is:

[Question ID = 710]


[Option ID $=2839$ ]

[Option ID = 2837]



Option ID = 2838]
60) The ionic strength of an aqueous $0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution is
[Question ID = 682]

1. 0.30 M [Option ID $=2728]$
2. 0.25 M [Option ID $=2727]$
3. 0.60 M [Option ID $=2725$ ]
4. 0.10 M [Option ID $=2726$ ]

Correct Answer :-

- 0.30 M [Option ID = 2728]

61) Find out the product of the following reaction

[Question ID = 772]

[Option ID = 3087]

[Option ID = 3088]

[Option ID = 3086]

4. [Option ID = 3085]

Correct Answer :

[Option ID = 3086]
62) The major product formed in the following reaction is

$\qquad$
[Question ID = 733]



Correct Answer :-

[Option ID = 2929]
63) The energies of activation for forward and reverse reactions for $\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$ are $180 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The presence of a catalyst lowers the activation energy of both (forward and reverse) reactions by $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy change of the reaction $\left(\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}\right)$ in the presence of catalyst will be (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ):
[Question ID = 767]

1. 120 [Option ID $=$ 3065]
2. 280 [Option ID $=3066$ ]
3. 300 [Option ID $=3068$ ]
4. 20 [Option ID $=3067$ ]

Correct Answer :-

- 20 [Option ID = 3067]

64) The amino acid constituents of artificial sweetener given below are

[Question ID = 734]
L-Aspartic acid and L-tyrosine [Option ID = 2936]
D-Glutamic acid and L-phenylglycine
[Option ID = 2933]
L-Glutamic acid and L-phenylalanine
[Option ID = 2934]
L-Aspartic and L-phenylalanine
[Option ID = 2935]
Correct Answer :-
L-Aspartic and L-phenylalanine
65) Graphite reacts with potassium to produce a compound with empirical formula $\mathrm{KC}_{8}$ of the following which is the best description of this structure:
$\mathrm{K}^{+}$ion packed with $\mathrm{C}_{2}{ }^{2-}$ ions [Option ID = 2702]
Negatively charged hexagonal carbon layers with intercalated $\mathrm{K}^{+}$ions
An expanded diamond lattice with $\mathrm{K}^{+}$ions in the tetrahedral holes
[Option ID = 2704]
$\mathrm{K}^{+}$-ion closed packed with polyhedral $\mathrm{C}_{8}-$ ions
[Option ID = 2701]

## Correct Answer :-

Negatively charged hexagonal carbon layers with intercalated $\mathrm{K}^{+}$ions

```
[Option ID = 27031
```

66) The IUPAC name for the following molecule is:

[Question ID = 729]
1. (27, 4Z)-3, 4-dibromo hepta-2, 4-diene [Option ID $=2914]$
2. (2E, 4E)-3, 4-dibromo hepta-2, 4-diene [Option ID $=2915]$
3. (2E, 4Z)-3, 4-dibromo hepta-2, 4-diene [Option ID $=2916$ ]
4. $(2 Z, 4 E)$-3, 4-dibromo hepta-2, 4-diene [Option ID $=2913]$

Correct Answer :-

- $(2 \mathrm{E}, 4 \mathrm{Z})$-3, 4-dibromo hepta-2, 4-diene [Option ID $=2916$ ]

67) Saturated solution of $\mathrm{KNO}_{3}$ is used to make 'salt bridge' because-

## [Question ID = 765]

$\mathrm{KNO}_{3}$ is highly soluble in water [Option ID = 3060]
velocity of $\mathrm{K}^{+}$is greater than that of $\mathrm{NO}_{3}-$
velocity of $\mathrm{NO}_{3}-$ is greater than that of $\mathrm{K}^{+}$
velocity of both $\mathrm{K}^{+}$and $\mathrm{NO}_{3}-$ are nearly the same

## Correct Answer :-

velocity of both $\mathrm{K}^{+}$and $\mathrm{NO}_{3}{ }^{-}$are nearly the same
68) In the following reaction the major product formed is:

[Question ID = 724]

[Option ID = 2893]
 [Option ID = 2895]

[Option ID = 2896]



Correct Answer :-

[Option ID = 2893]
69) The product formed in the following reaction is:

[Question ID = 721]

[Option ID = 2881]

[Option ID = 2884]

[Option ID = 2882]

[Option ID = 2883]

Correct Answer :-

${ }^{\text {70) }}$ In a zero-order reaction for every $10^{\circ} \mathrm{C}$ rise of temperature, the rate is doubled. If the temperature is increased from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, the rate of the reaction will become-
[Question ID = 766]

1. 512 times [Option ID $=3064]$
2. 256 times [Option ID $=3063$ ]
3. 128 times [Option ID $=3062$ ]
4. 64 times [Option ID $=3061$ ]

## Correct Answer :-

## - 512 times [Option ID = 3064]

71) $\mathrm{H}^{+}+$ $\qquad$ $\mathrm{IO}_{3}{ }^{-}+$ $\qquad$ $\mathrm{I}^{-}$ $\qquad$ $\mathrm{I}_{2}+$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$

The reaction is not balanced. If the reaction is balanced using the smallest whole number coefficients possible, the coefficients for $\mathrm{I}^{-}$will be:
[Question ID = 670]
. 2 [Option ID $=2678]$
2. 5 [Option ID $=2680$ ]
3. 1 [Option ID $=2677]$
4. 3 [Option ID $=2679$ ]

Correct Answer :-

- 5 [Option ID = 2680]

72) Arrange the following compounds in decreasing order of IR stretching frequency of $\mathrm{C}=\mathrm{O}$

i

ii

iii

iv
[Question ID = 731]
iv $>\mathrm{i}>\mathrm{ii}>\mathrm{iii}$
[Option ID = 2924]
ii $>\mathrm{i}>\mathrm{iii}>\mathrm{iv}$ [Option ID = 2923]
iii $>\mathrm{i}>\mathrm{ii}>\mathrm{iv}$
[Option ID = 2922]
$\mathrm{i}>\mathrm{ii}>\mathrm{iii}>\mathrm{iv}$
[Option ID = 2921]
Correct Answer :-
iii $>\mathrm{i}>\mathrm{ii}>\mathrm{iv}$
[Option ID = 2922]

## 73)

$\qquad$ $\mathrm{MnO}_{4}{ }^{-}+$ $\qquad$ $\mathrm{I}^{-+}$ $\qquad$ $\mathrm{H}^{+} \quad=$ $\qquad$ $\mathrm{Mn}^{2+}+$ $\qquad$ $\mathrm{IO}_{3}{ }^{-}+$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$
The correct balanced one will be:
[Question ID = 690]
$\mathrm{MnO}_{4}{ }^{-}: \mathrm{IO}_{3}{ }^{-}$is $1: 1$
[Option ID $=2760]$
$\mathrm{MnO}_{4}: \mathrm{Mn}^{2+}$ is $3: 1$
[Option ID = 2759]
$\mathrm{I}^{-}: \mathrm{IO}_{3}-$ in $3: 1$

```
Correct Answer :
\(\mathrm{MnO}_{4}{ }^{-}\): \(\mathrm{I}^{-}\)in 6:5
```

${ }^{74)}$ In the following reaction sequence, the structure of the product is:

[Question ID = 720]

[Option ID = 2879]

[Option ID $=2878]$

[Option ID = 2880]

[Option ID = 2877]

Correct Answer :-

[Option ID = 2877]
${ }^{75)}$ The major product formed in the sulphuric acid mediated rearrangement of compound is:

[Question ID = 722]

[Option ID = 2886]

[Option ID = 2888]

[Option ID = 2885]

[Option ID = 2887]

[^4]
[Option ID = 2887]
${ }^{76)}$ What is the specific resistance (or resistivity) of a conductor with cross-sectional area 4 $\mathrm{cm}^{2}$, length 2 cm and resistance 10 ohms?
[Question ID = 755]
20 Siemens $^{-1} \mathrm{~cm}$
[Option ID = 3019]
10 Siemens $^{-1} \mathrm{~cm}$
[Option ID $=$ 3018]
None of the above
[Option ID = 3020]
40 Siemens $^{-1} \mathrm{~cm}$
[Option ID = 3017]

## Correct Answer :-

20 Siemens $^{-1} \mathrm{~cm}$
[Option ID = 3019]
77) The anhydride of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
[Question ID = 695]

1. Ba [Option ID $=2779]$
2. BaO [Option ID $=2780$ ]
3. BaOH [Option ID $=2778$ ]
4. $\mathrm{BaH}_{2}[$ Option ID $=2777]$

Correct Answer :-

- BaO [Option ID = 2780]

78) A compound with molecular formula $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$ shows band at $1770 \mathrm{~cm}^{-1}$ in IR spectra and peaks at $178,68,28,22 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR spectrums. The correct structure of the compound is:
[Question ID = 703]

[Option ID = 2811]

[Option ID = 2809]

[Option ID = 2812]

[Option ID $=2810$ ]
Correct Answer :-


[Option ID = 2810]
79) An aqua's solution of an optically pure compound of conc. 100 mg in 1 ml of water and measured in sample of 5 cm length was found to be $-3^{\circ}$ the specific rotation is
```
[Question ID = 732]
 -6 C
 Option ID = 2927]
 +6 %
 [Option ID = 2928]
 -60 %
 -30 %
4. [Option ID = 2925]
```

Correct Answer :-
$-60^{\circ} \mathrm{C}$
[Option ID = 2926]
80) A monoatomic gas following Fermi-Dirac statistics begins to follow Maxwell-Boltzmann statistics at: [Question ID $=735$ ]

1. Low Temperature and low density [Option ID = 2937]
2. High Temperature and high density [Option ID = 2940]
3. Low Temperature and high density [Option ID $=2938$ ]
4. High Temperature and low density [Option ID = 2939]

## Correct Answer :-

- High Temperature and low density [Option ID = 2939]

81) The Dulong and Petit's Law says that the molar heat capacity of elements is: [Question ID = 741]
$10 \mathrm{Cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
. [Option ID = 2964]
$6 \mathrm{Cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ [Option ID $=2961$ ]
$12 \mathrm{Cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
[Option ID = 2963]
$3 \mathrm{Cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
[Option ID = 2962]

Correct Answer :-
$6 \mathrm{Cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
[Option ID = 2961]
82) What is the most common natural form in which fluorine is found on earth?
[Question ID $=684$ ]

1. As a fluoride ion in various minerals [Option ID $=2735$ ]
2. As weak acid HF (aq) [Option ID = 2734]
3. In various fluorocarbon compounds in the atmosphere. [Option ID $=2736$ ]
4. As $\mathrm{XeF}_{2}$ (s) [Option ID = 2733]

Correct Answer :-

- As a fluoride ion in various minerals [Option ID $=2735$ ]

83) What is the correct form of Stirling's approximation?
[Question ID $=738$ ]
$\ln x!=x \ln x-x$
```
ln}x!=\operatorname{ln}x+
\(\ln x!=x \ln x+x\)
\(\ln x!=x-x \ln x\)
[Option ID = 2952]
```

Correct Answer :
ln}x!=x\operatorname{ln}x-
[Option ID = 2950]

```
84) What is the total energy of one mole of an ideal monoatomic gas in terms of Boltzmann's Constant (k), Avogadro's number (N) and temperature (T)
[Question ID = 739]
1. 3 NkT [Option ID \(=2953\)]
2. \((3 / 2)\) NkT [Option ID \(=2956\)]
3. \((1 / 2)\) NkT [Option ID \(=2955\)]
4. NkT [Option ID \(=2954\)]

Correct Answer :-
- (3/2) NkT [Option ID = 2956]
```

85) The following equation is associated with the relationship between the diffusion current and the concentration of the depolarizer
used in polarography: [Question ID = 753]
1. Debye-Huckel equation [Option ID = 3009]
2. Stern-Volmer equation [Option ID =3010]
3. Nyquist equation [Option ID =3012]
4. Ilkovic equation [Option ID =3011]
```
Correct Answer :-
- Ilkovic equation [Option ID \(=3011\)]
86) Electronic transitions originating from the \(1 S\) energy level of the Hydrogen atom to higher levels belong to which series? [Question ID = 747]
1. Lyman Series [Option ID \(=2985\)]
2. Brackett Series [Option ID \(=2987\)]
3. Balmer Series [Option ID \(=2986\)]
4. Pfund Series [Option ID \(=2988\)]

Correct Answer :-
- Lyman Series [Option ID = 2985]
87) Which of the following reactions best classified as an oxidative addition? [Question ID =701]
```

    \(\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]+\mathrm{Br}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{Br}\right]+\mathrm{CO}\)
    \(\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]^{-}+\mathrm{NH}_{3} \rightarrow \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}+\mathrm{Cl}\)
        [Option ID \(=2803\) ]
    \(\left[\mathrm{Pt}\left\{\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}_{2} \mathrm{HCl}\right]+\mathrm{HCl} \rightarrow \quad\left[\mathrm{Pt}\left\{\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}_{2}(\mathrm{H})_{2} \mathrm{Cl}_{2}\right]\)
    \(\left[\mathrm{MnH}(\mathrm{CO})_{5}\right]+\mathrm{CF}_{2}=\mathrm{CF}_{2} \rightarrow\left[\mathrm{Mn}\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}\right)(\mathrm{CO})_{5}\right]\)
    ```
 [Option ID = 2804]
Correct Answer :-
 \(\left[\mathrm{MnH}(\mathrm{CO})_{5}\right]+\mathrm{CF}_{2}=\mathrm{CF}_{2} \rightarrow\left[\mathrm{Mn}\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}\right)_{2}(\mathrm{CO})_{5}\right]\)
 [Option ID = 2804]

\footnotetext{
88) Which of the following is required for both paramagnetism and ferromagnetism? [Question ID = 698]
}
1. Super exchange [Option ID \(=2791\)]
2. unpaired electrons [Option ID \(=2792\)]
3. Low-spin electron configuration [Option ID \(=2790\)]
4. Strong oxidizing conditions [Option ID \(=2789\)]

\footnotetext{
Correct Answer
}

\footnotetext{
- unpaired electrons [Option ID \(=2792\)]
}
89) Which of the following experimental techniques is not used to determine the average molecular weight of a polymer? [Question ID = 760]
1. Transmission electron microscopy [Option ID \(=3039\)]
2. Equilibrium sedimentation [Option ID = 3038]
3. Intrinsic viscosity measurement [Option ID = 3040]
4. Dynamic light scattering [Option ID = 3037]
```

Correct Answer :-

- Transmission electron microscopy [Option ID = 3039]

```
90) Which of the following is NOT a known relatively stable compound of uranium? [Question ID = 687]
\(\mathrm{UF}_{6}\)
[Option ID \(=2745\)]
\(\mathrm{UO}_{3}\)
Option ID \(=2748\)
\(\mathrm{UO}_{2}\)
Ption ID = 2747
\(\mathrm{U}\left(\mathrm{CH}_{3}\right)_{2}\)
[Option ID = 2746]

\section*{Correct Answer :-}
\(\mathrm{U}\left(\mathrm{CH}_{3}\right)_{2}\)
[Option ID = 2746]
91) Which of the following compounds exist in stereoisomeric form? [Question ID \(=681\)]
\(\left.\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right)\right]^{+}\) [Option ID = 2721]
\(\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]\) Option ID = 2724
\(\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]\) [Option ID = 2722\(]\)
\(\left[\mathrm{PtCl}_{4}\right]^{2-}\)
[Option ID = 2723]

\section*{Correct Answer :-}
\(\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]\)
[Option ID = 2724]
92) Which of the following statement is not true? [Question ID = 745]
1. Methane is a spherical top molecule [Option ID \(=2978\)]
2. Chloroform is a symmetric top molecule [Option ID \(=2980\)]
3. Vinyl chloride is a symmetric top molecule [Option ID \(=2979\)]
4. Water is an asymmetric top molecule [Option ID \(=2977\)]

\section*{Correct Answer :-}
- Vinyl chloride is a symmetric top molecule [Option ID = 2979]

\section*{93) Which of the following is a n-type semiconductor? [Question ID = 696]}
1. Silicon carbide [Option ID \(=2784\)]
2. Silicon [Option ID \(=2781\)]
3. Arsenic doped silicon [Option ID \(=2783\)]
4. Gallium doped silicon [Option ID \(=2782\)]

\section*{Correct Answer :-}
- Arsenic doped silicon [Option ID \(=2783\)]

\footnotetext{
94) Which of the statement is not true? [Question ID = 746]
1. Franck Condon Principle states that during electronic transition the internuclear distance of a molecule does not change [Option ID = 2983]
2. The intensity of a fundamental vibrational transition is higher than that of a first overtone transition. [Option ID = 2984]
3. Morse equation represents the energy expression of a simple harmonic oscillator [Option ID \(=2982\)]
4. The energy spacing between various vibrational levels are the same in a simple harmonic oscillator [Option ID \(=2981\)]
}

\footnotetext{
Correct Answer :
}
```

95) Which of the statement is true? [Question ID = 752]
1. The mean ionic activity coefficients of aqueous NaCl solution and aqueous }\textrm{KBr}\mathrm{ solution, both at low concentrations, are independent of their respective
ionic strengths [Option ID = 3008]
2. The mean ionic activity coefficient of aqueous NaCl solution at low concentration decreases with increase in its ionic strength [Option ID = 3006]
3. The mean ionic activity coefficients of aqueous NaCl solution and aqueous }\textrm{KBr}\mathrm{ solution, both at low concentrations, vary differently upon increase of
their respective ionic strengths [Option ID = 3007]
4. The mean ionic activity coefficient of aqueous NaCl solution at low concentration increases with increase in its ionic strength [Option ID = 3005]
```

\section*{Correct Answer :-}
- The mean ionic activity coefficient of aqueous NaCl solution at low concentration decreases with increase in its ionic strength [Option ID \(=3006\)]
96) The highest temperature that can be achieved due to a single normal mode of vibration in a solid crystal is known as: [Question ID = 757]
1. Debye Temperature [Option ID \(=3026\)]
2. Theta Temperature [Option ID \(=3027\)]
3. Curie Temperature [Option ID \(=3025\)]
4. Flory Temperature [Option ID \(=3028\)]

Correct Answer :-
- Debye Temperature [Option ID \(=3026\)]
97) Which is not a scientific site? [Question ID = 691]
1. Research Gate [Option ID = 2763]
2. Scopus [Option ID = 2761]
3. Web of Science [Option ID = 2762]
4. Google Plus [Option ID \(=2764\)]

Correct Answer :-
- Google Plus [Option ID = 2764]
98) According to the Michaelis Menten equation for unimolecular reactions: [Question ID = 751]
1. The rate is first order at low pressure, but becomes zero order at high pressure [Option ID = 3003]
2. The rate is zero order at both low and high pressures [Option ID = 3002]
3. The rate is zero order at low pressure, but becomes first order at high pressure [Option ID = 3004]
4. The rate is first order at both low and high pressures [Option ID = 3001]

\section*{Correct Answer :-}
- The rate is first order at low pressure, but becomes zero order at high pressure [Option ID = 3003]
99) The +1 oxidation state is more stable than +3 oxidation state for which of the following Group 13 element [Question ID \(=694\)]
1. In [Option ID \(=2775]\)
2. B [Option ID \(=2773\)]
3. AI [Option ID \(=2774]\)
4. \(\mathrm{Tl}[\) Option ID \(=2776\)]

Correct Answer :-
- TI [Option ID = 2776]
```

100) In how many ways can }10\mathrm{ distinguishable particles be placed in 3 boxes, so that there are 3 particles in first box, 5 in second and 2
in third? [Question ID = 737]
1. None of these [Option ID = 2948]
2. 1520 ways [Option ID = 2946]
3. }3260\mathrm{ ways [Option ID = 2947]
4. 2520 ways [Option ID = 2945]
Correct Answer :-

- 2520 ways [Option ID = 2945]

```
```


[^0]:    Correct Answer :

[^1]:    [Question ID = 761]

[^2]:    [Question ID = 716]

[^3]:    [Question ID = 689]

[^4]:    Correct Answer :-

