

Topic:- DU_J18_P	HD_CHEM
1) Which of the fol	lowing statements about sulfur dioxide is true?
[Question ID = 677	1
	r in condensed phase [Option ID = 2707]
	furic acid [Option ID = 2706] 180 ⁰ [Option ID = 2708]
	e combustion of fossil fuels that contain sulfur [Option ID = 2705]
Correct Answer :-	
 It is a product of the 	te combustion of fossil fuels that contain sulfur [Option ID = 2705]
2) Which of the fol	lowing is a strong acid in pure liquid HF
Question ID = 683	
1. H ₂ O [Option ID = 2	
2. NaF [Option ID = 2	729]
 CH₃COOH [Option] SbF₅ [Option ID = 2 	
 SbF₅ [Option ID = 	
HC(CH ₂ CH ₂ M CH ₃ NHCH ₂ C N(CH ₂ CH ₂ N	wing molecules can act as a chelating agent EXCEPT [Question ID = 679] NH ₂) ₃ [Option ID = 2716] H ₂ CH ₃ [Option ID = 2714] H ₂) ₃ [Option ID = 2713]
HC(CH ₂ CH ₂ M	H_2)3 [Option ID = 2716] H_2CH_3 [Option ID = 2714] H_2)3 [Option ID = 2713]
HC(CH ₂ CH ₂ N CH ₃ NHCH ₂ C N(CH ₂ CH ₂ N H ₂ NCH ₂ CH ₂ N Correct Answer :-	NH ₂) _{3 [Option ID = 2716] H₂CH_{3 [Option ID = 2714]} H₂)_{3 [Option ID = 2713]}}
HC(CH ₂ CH ₂ N CH ₃ NHCH ₂ C N(CH ₂ CH ₂ N H ₂ NCH ₂ CH ₂ N Correct Answer :- CH ₃ NHCH ₂ C	MH ₂) ₃ [Option ID = 2716] H ₂ CH ₃ [Option ID = 2714] H ₂) ₃ [Option ID = 2713] NH ₂ [Option ID = 2715] H ₂ CH ₃ [Option ID = 2714]
L HC(CH ₂ CH ₂ N CH ₃ NHCH ₂ C N(CH ₂ CH ₂ N H ₂ NCH ₂ CH ₂ N Correct Answer :- CH ₃ NHCH ₂ C 4) What is correct	NH ₂) ₃ [Option ID = 2716] H ₂ CH ₃ [Option ID = 2714] H ₂) ₃ [Option ID = 2713] NH ₂ [Option ID = 2715] H ₂ CH ₃ [Option ID = 2714] about h-index?
 HC(CH₂CH₂N CH₃NHCH₂C CH₃NHCH₂C N(CH₂CH₂N H₂NCH₂CH₂N H₂NCH₂CH₂N Correct Answer :- CH₃NHCH₂C What is correct What is correct 	<pre>NH2); [Option ID = 2716] H2CH3 [Option ID = 2714] H2); [Option ID = 2713] NH2 [Option ID = 2715] H2CH3 [Option ID = 2714]</pre>
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. Correct Answer :- 3. CH ₃ NHCH ₂ C 4) What is correct 4) What is correct 4. Alternative of impact 2. Based on most quo	<pre>SH2); [Option ID = 2716] H2CH3 [Option ID = 2714] H2); [Option ID = 2713] NH2 [Option ID = 2715] H2CH3 [Option ID = 2714] : about h-index?] tf factor [Option ID = 3031] ted papers [Option ID = 3030]</pre>
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ N) 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. Correct Answer :- 5. CH ₃ NHCH ₂ C 4) What is correct 4) What is correct 4. Alternative of impac 2. Based on most quo 3. Quantify scientific p	JH2)3 [Option ID = 2716] H2CH3 [Option ID = 2713] H2)3 [Option ID = 2713] NH2 [Option ID = 2715] H2CH3 [Option ID = 2714] t about h-indext? [t factor [Option ID = 3031] [ted papers [Option ID = 3030] moductivity [Option ID = 3029]
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂) Correct Answer :- , CH ₃ NHCH ₂ C 4) What is correct [Question ID = 758 1. Alternative of impac 2. Based on most quo	JH2)3 [Option ID = 2716] H2CH3 [Option ID = 2713] H2)3 [Option ID = 2713] NH2 [Option ID = 2715] H2CH3 [Option ID = 2714] t about h-indext? [t factor [Option ID = 3031] [ted papers [Option ID = 3030] moductivity [Option ID = 3029]
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ N) 4. H ₂ NCH ₂ CH ₂ N 4. Correct Answer :- 5. CH ₃ NHCH ₂ C 4) What is correct 4) What is correct 4. Alternative of impac 5. Quantify scientific p 4. All of these [Option 5. Correct Answer :- 5. Correct Answer	NH2); [Option ID = 2716] H2CH3 [Option ID = 2714] H2); [Option ID = 2713] NH2 [Option ID = 2715] H2CH3 [Option ID = 2714] : about h-index?] :t factor [Option ID = 3031] ted papers [Option ID = 3030] roductivity [Option ID = 3029] ID = 3032]
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ NI 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. Correct Answer :- 5. CH ₃ NHCH ₂ C 4) What is correct 4) What is correct 4. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. Charlen 200 5. Correct Answer :- 5. C	NH2); [Option ID = 2716] H2CH3 [Option ID = 2714] H2); [Option ID = 2713] NH2 [Option ID = 2715] H2CH3 [Option ID = 2714] : about h-index?] :t factor [Option ID = 3031] ted papers [Option ID = 3030] roductivity [Option ID = 3029] ID = 3032]
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ NI 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂) 4. Orrect Answer :- 5. CH ₃ NHCH ₂ C 4) What is correct 4) What is correct 4. Alternative of impact 2. Based on most quot 3. Quantify scientific p 4. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. All of these [Option 5. Correct Answer :- 5. Charlen Correct Answer :- 5.	NH2); [Option ID = 2716] H2CH3 [Option ID = 2714] H2); [Option ID = 2713] NH2 [Option ID = 2715] H2CH3 [Option ID = 2714] : about h-index?] tt factor [Option ID = 3031] ted papers [Option ID = 3030] roductivity [Option ID = 3029] ID = 3032] t ID = 3032] ectron spin resonance (e.s.r.) spectrum of the benzene radical has how many lines? [Question ID = 748]
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. CH ₃ NHCH ₂ C 4) What is correct 4) What is correct 4) What is correct 4. All of these [Option 5) The hyperfine el 1. 12 [Option ID = 29 2. 7 [Option ID = 29 3. 2 [Option ID = 29] 3. 2 [Option ID = 29] 3. 2 [Option ID = 29] 3. 7 [Option ID = 29] 4. 3 [Option ID = 29] 4. 3 [Option ID = 29] 5. 7 [Option ID = 20] 5. 7 [Opti	<pre>NH2); [Option ID = 2716] H2CH3 [Option ID = 2713] H2); [Option ID = 2713] NH2 [Option ID = 2714] #2CH3 [Option ID = 2714] # about h-index?] t factor [Option ID = 3031] ted papers [Option ID = 3030] woductivity [Option ID = 3029] ID = 3032] # ID = 3032] # Content of the benzene radical has how many lines? [Question ID = 748] 90]</pre>
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. CH ₃ NHCH ₂ C 4) What is correct 4) What is correct 4) What is correct 4) What is correct 4. All of these [Option 5) The hyperfine el 1. 12 [Option ID = 29	<pre>SH2); [Option ID = 2716] H2CH3 [Option ID = 2716] H2); [Option ID = 2713] SH2 [Option ID = 2715] H2CH3 [Option ID = 2714] : about h-index?] t factor [Option ID = 3031] ted papers [Option ID = 3030] roductivity [Option ID = 3029] ID = 3032] ectron spin resonance (e.s.r.) spectrum of the benzene radical has how many lines? [Question ID = 748] 90] 991]</pre>
1. HC(CH ₂ CH ₂ N 2. CH ₃ NHCH ₂ C 3. N(CH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. H ₂ NCH ₂ CH ₂ N 4. CH ₃ NHCH ₂ C 4) What is correct 4) What is correct 4) What is correct 4. All of these [Option 5) The hyperfine el 1. 12 [Option ID = 29 2. 7 [Option ID = 29 3. 1 [Option ID = 29 3. 1 [Option ID = 29 3. 1 [Option ID = 29 3. 1 [Option ID = 20	<pre>SH2); [Option ID = 2716] H2CH3 [Option ID = 2716] H2); [Option ID = 2713] SH2 [Option ID = 2715] H2CH3 [Option ID = 2714] : about h-index?] t factor [Option ID = 3031] ted papers [Option ID = 3030] roductivity [Option ID = 3029] ID = 3032] ectron spin resonance (e.s.r.) spectrum of the benzene radical has how many lines? [Question ID = 748] 90] 991]</pre>

www.FirstRanker.com www.FirstRanker.com

6) The energy changes involving the core electrons of an atom or molecule are expressed in which region of the electromagnetic spectrum? [Question ID = 742]
1. Ultraviolet and Visible region [Option ID = 2967]
2. X-ray region [Option ID = 2968]
3. Radiofrequency region [Option ID = 2966] 4. Infra-red region [Option ID = 2965]
Correct Answer :- • X-ray region [Option ID = 2968]
• X-lay region [option to = 2306]
7) Find out the expected intensity ratio of M and M+1 signal for the Naphthalene molecular ion [Question ID = 726]
1. 99:1.1 [Option ID = 2903] 2. 1.1:99 [Option ID = 2904]
3. 9:01 [Option ID = 2901]
4. 1:9 [Option ID = 2902]
Correct Answer :-
 9:01 [Option ID = 2901]
 8) Cobalt-60 is used in radiation therapy of cancer and can be produced by the bombardment of Cobalt-59 with [Question ID = 692] 1. Alpha particles [Option ID = 2765] 2. Beta particles [Option ID = 2767] 3. Neutrons [Option ID = 2766] 4. Gamma rays [Option ID = 2768]
Correct Answer :-
Neutrons [Option ID = 2766]
reaction of the cell is- [Question ID = 763] 1. [Option ID = 3051] 2. 10 ³⁰ [Option ID = 3052] 3. 10 ²⁵ [Option ID = 3049] 4. [Option ID = 3050]
Correct Answer :- , 10 ³⁰ [Option ID = 3052]
 A characteristic common to polymers that can be made to conduct electricity such as polyacetylene, polypyrrole is: [Question ID = 685]
1. Conjugation throughout the polymeric chain. [Option ID = 2740]
 A high degree of cross linking [Option ID = 2738] A very low glass transition temperature [Option ID = 2737]
4. Presence of stereogenic centers of the same configuration [Option ID = 2739]
Correct Answer :-
 Conjugation throughout the polymeric chain. [Option ID = 2740]
11) Impact factor is [Question ID = 768]
1. Ratio between citations and recent citable items publish [Option ID = 3071]
 All of these [Option ID = 3072] Addition of citations and recent citable items publish [Option ID = 3069]
4. Ratio between recent citable items publish and citations [Option ID = 3070]
Correct Answer :-
Ratio between recent citable items publish and citations [Option ID = 3070]
12) On the basis of oxidation-reduction potential, which of the following is most likely to occur? [Question ID = 693]

	www.FirstRanker.com www.FirstRanker.com
P	$Al(s) + 3NaNO_3(aq) \rightarrow 3Na(s) + Al(NO_3)_3(aq)$
	$Ca(s) + 2NaNO_3 (aq) \rightarrow 2Na(s) + Ca(NO_3)_2 (aq)$ $[Option ID = 2770]$ $[Option ID = 2772]$
	$Pb(s) + 2LiNO_3(aq) \rightarrow 2Li(s) + Pb(NO_3)_2(aq)$
3.	$In(s) + 2AgNO_3 (aq) \rightarrow 2Ag(s) + Zn(NO_3)_2 (aq)$ $[Option ID = 2771]$ $[Option ID = 2769]$
	rect Answer :- $Zn(s) + 2AgNO_3 (aq) \rightarrow 2Ag(s) + Zn(NO_3)_2 (aq)$
	[Option ID = 2769]
	How many diastereoisomers are possible for the compound 2, 4 -diphenylcyclobutane-1, 3 di carboxylic acids. [Question ID =
2.5 3.8	[Option ID = 2899] [Option ID = 2898] [Option ID = 2900] [Option ID = 2897]
	rect Answer :- [Option ID = 2898]
14)	An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to- [Question ID = 764]
1. 2. 3.	increase in ionic mobility of ions [Option ID = 3055] increase in number of ions [Option ID = 3054] 100% ionization of electrolyte at normal dilution [Option ID = 3056] increase in both i.e. number of ions and ionic mobility of ions. [Option ID = 3053]
[Qu 1. H 2. 3. E	The solid state structures of the principal allotropes of elemental boron are made up of which of the following structural units estion ID = 699] 34 terahedra B6 octahedra [Option ID = 2796] 38 cubes [Option ID = 2795] 312 icosahedra [Option ID = 2793]
	rect Answer :- B12 icosahedra [Option ID = 2793]
16)	The molecular geometry of thionyl chloride is best described as [Question ID = 688]
	-shaped [Option ID = 2752] etrahedral [Option ID = 2751]
3. T	rigonal pyramidal [Option ID = 2749] rigonal planar [Option ID = 2750]
	rect Answer :- rigonal pyramidal [Option ID = 2749]
	In a face-center cubic (FCC) type of crystal lattice, the number of atoms belonging exclusively to each unit cell within the latt ire: [Question ID = 754]
2. 3.	[Option ID = 3014] 1 [Option ID = 3013] 3 [Option ID = 3015] 4 [Option ID = 3016]
	· [-]
	rect Answer :-

. .

www.FirstRanker.com www.FirstRanker.com

 1. Mg (s) [Option ID = 2699] 2. Iz (s) [Option ID = 2699] 3. H⁺ (aq) [Option ID = 2700] 4. MnO4[•] (aq) [Option ID = 2697] Correct Answer :- • Mg (s) [Option ID = 2698] 19) For a polymer, which of the following statement/s is/are true? [Question ID = 759] 1. Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 2. Formation of a polymetrization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- • Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3034] 2. All of these [Option ID = 3036] 4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- • Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3046] 2. One dimensional [Option ID = 3046]
 Li (s) [Option ID = 2699] H⁺ (aq) [Option ID = 2700] MnO4* (aq) [Option ID = 2697] Correct Answer :- Mg (s) [Option ID = 2698] 19) For a polymer, which of the following statement/s is/are true? [Question ID = 759] Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] Formation of a polypeptide from its monomers (amino adds) is an example of addition polymerization [Option ID = 3034] All of these [Option ID = 3036] Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035]
 J⁺ (aq) [Option ID = 2700] MnO₄ (aq) [Option ID = 2697] Correct Answer :- Mg (s) [Option ID = 2698] 19) For a polymer, which of the following statement/s is/are true? [Question ID = 759] 1. Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 2. Formation of a polypeptide from its monomers (amino acids) is an example of addition polymerization [Option ID = 3034] 3. All of these [Option ID = 3036] 4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
 4. MnO4* (aq) [Option ID = 2697] Correct Answer :- Mg (s) [Option ID = 2698] 19) For a polymer, which of the following statement/s is/are true? [Question ID = 759] 1. Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 2. Formation of a polypeptide from its monomers (amino acids) is an example of addition polymerization [Option ID = 3034] 3. All of these [Option ID = 3036] 4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
 Mg (s) [Option ID = 2698] 19) For a polymer, which of the following statement/s is/are true? [Question ID = 759] 1. Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 2. Formation of a polypeptide from its monomers (amino acids) is an example of addition polymerization [Option ID = 3034] 3. All of these [Option 1D = 3036] 4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
 19) For a polymer, which of the following statement/s is/are true? [Question ID = 759] 1. Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 2. Formation of a polypeptide from its monomers (amino acids) is an example of addition polymerization [Option ID = 3034] 3. All of these [Option ID = 3036] 4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
 Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] Formation of a polypeptide from its monomers (amino acids) is an example of addition polymerization [Option ID = 3034] All of these [Option ID = 3036] Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] Three dimensional [Option ID = 3048]
2. Formation of a polypeptide from its monomers (amino acids) is an example of addition polymerization [Option ID = 3034] 3. All of these [Option ID = 3036] 4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- • Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
2. Formation of a polypeptide from its monomers (amino acids) is an example of addition polymerization [Option ID = 3034] 3. All of these [Option ID = 3036] 4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- • Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
 4. Vinyl polymerization is an example of condensation polymerization. [Option ID = 3033] Correct Answer :- Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
Correct Answer :- • Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] 20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
Weight average molecular weight is almost always higher than the number average molecular weight [Option ID = 3035] Quantum dots are [Question ID = 762] Three dimensional [Option ID = 3048]
20) Quantum dots are [Question ID = 762] 1. Three dimensional [Option ID = 3048]
1. Three dimensional [Option ID = 3048]
1. Three dimensional [Option ID = 3048]
2. One dimensional [Option ID = 3046]
3. Two dimensional [Option ID = 3047]
4. Zero dimensional [Option ID = 3045]
Correct Answer :-
Zero dimensional [Option ID = 3045]
$\begin{array}{c} mol^{-1} dm^{3} s^{-1} \\ mol^{-2} dm^{6} s^{-1} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Correct Answer :-
mol-2 dm ⁶ s-1
. [Option ID = 2996]
22) All the following elements have at least one isotope that is not radioactive EXCEPT [Question ID = 673]
1. Pb [Option ID = 2690]
2. O [Option ID = 2689]
3. Sn [Option ID = 2691] 4. No [Option ID = 2692]
Correct Answer :-
 No [Option ID = 2692]
23) The conditions for a species to follow Bose-Einstein statistics are; [Question ID = 736]
 Particles are indistinguishable, with no restriction on filling up of energy levels [Option ID = 2944] Particles are indistinguishable, with a restriction on filling up of energy levels [Option ID = 2943]
 Particles are indistinguishable, with a restriction on filling up of energy levels [Option ID = 2943] Particles are distinguishable, with a restriction on filling up of energy levels [Option ID = 2941]
 Particles are distinguishable, with no restriction on filling up of energy levels [Option ID = 2942]
Correct Answer :- • Particles are indistinguishable, with no restriction on filling up of energy levels [Option ID = 2944]
* Parobes are indisonguishable, with no restriction on filling up or energy levels [uption $1D = 2999$]
24) In the kinetic theory of collisions, the SI unit of collision number, in terms of m (meter) and s (second), is:
[Question ID = 761]

www.FirstRanker.com www.FirstRanker.com

Correct Answer :-	
None of these [Option II]) = 3044]
25) Correct characterist	ics of the functional groups of adenine in DNA base pair are [Question ID = 706]
Both N(3) and C(6)NH2 are hydrogen bond donors.
1.	[Option ID = 2824]
N(3) is a hydroger	n bond acceptor and C(6)NH ₂ is a hydrogen bond donor. [Option ID = 2821]
Both N(3) and C(6	6)NH ₂ are hydrogen bond acceptors [Option ID = 2823]
N(1) is a hydroger	n bond acceptor and C(6)NH2 is a hydrogen bond donor. [Option ID = 2822]
Correct Answer :-	<u> </u>
N(1) is a hydroger	n bond acceptor and $C(6)NH_2$ is a hydrogen bond donor.
26) The carbon monoral	de molecule has an internuclear distance of 1.13 Angstroms. What is the moment of Inertia of this molec
[Question ID = 740]	te molecule has an internuclear distance of 1.13 Angstroms, what is the moment of therba of this molec
21.6 X 10-47 kgm2	[Option ID = 2960]
14.5 X 10-47 kgm2	
14.5 X 10 ⁴⁷ kgm ²	[obovi 12 - 1331]
1.45 X 10-47 kgm2	[Option ID = 2959]
Correct Answer :-	
14.5 X 10-47 kgm2	
	[Opbon ID = 2957]
27) Which of the followi	ing represent/s non-linear optical technique? [Question ID = 744]
1. Second Harmonic general 2. Two-photon photolumin	tion [Option ID = 2974] rescence [Option ID = 2975]
3. Four-wave mixing [Option 4. All of these [Option ID =	n ID = 29731
	2970]
Correct Answer :- All of these [Option ID =	2976]
	ving does not affect the intensity of spectral lines of a sample? [Question ID = 743]
1. Path length of a sample [2. Population of energy state	es [Option ID = 2970]
 Heisenberg's Uncertaint Concentration of a sample 	y principle [Option ID = 2971] e [Option ID = 2969]
Correct Answer :-	
	ty principle [Option ID = 2971]
29) Find out the maj	jor product of the following reaction
	OH
~~~	
	(ii) <i>Δ</i>
[Question ID = 716]	





















FirstRanker.com www.FirstRanker.com www.FirstRanker.com 1.32841 cm-1 43) It takes 10 minutes for the concentration of a radioactive species to decay to its 1/4th value of its original concentration. What is the rate constant of this radioactive decay reaction? [Question ID = 750] 415.8 s⁻¹ [Option ID = 2999] 865.8 s⁻¹ [Option ID = 3000] 3. 0.00231 s⁻¹ [Option ID = 2997] 4. 0.001155 s⁻¹ [Option ID = 2998] Correct Answer :-. 0.00231 s⁻¹ [Option ID = 2997] 44) The major product in the following reaction is: 31.0 Me. Me Me OH CF3CO2H work up [Question ID = 715] HC [Option ID = 2860] Me Me OH [Option ID = 2858] Ňе [Option ID = 2859] 4 Correct Answer :-

Me [Optio

45)





www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

⁸⁾ For EDTA titrations, the analyte solution pH for which of the following reasons: I. Conditional formation constant is affect II. The fraction of EDTA in the fully depr III. When EDTA is complexed with metal	rotonated Y4- form varies with pH.
Question ID = 697]	
. III only [Option ID = 2788]	
II only [Option ID = 2787]	
. I only [Option ID = 2785] . I, II and III [Option ID = 2786]	
orrect Answer :-	
I, II and III [Option ID = 2786]	
9) When Fa O is disashed in O (TD10 and	hich iron containing species dominate in the solution?
when Fe ₂ O ₃ is dissolved in 6M HNO ₃ , w	men non containing species dominate in the solution?
Question ID = 700]	
Fe(OH)a	
Fe(OH)3 [Option ID = 2798]	
Fe(OH)4- [Option ID = 2797]	
Fe(H ₂ O)6 ³⁺	
Fe(H ₂ O) ₆ ²⁺ [Option ID = 2799]	
[Option 10 = 2799]	<u></u>
Fe(H ₂ O) ₆ ²⁺ [Option ID = 2799]	
and two long Cr-F bonds. Which of the fo Question ID = 678] . Cr ²⁺ has a low cationic charge [Option ID = 2711] . F has -1 anionic charge and highly electronegative [Option ID . Spin-orbit coupling in Cr ²⁺ [Option ID = 2712]	
. The Jahn-Teller effect [Option ID = 2710]	
lorrect Answer :-	
The Jahn-Teller effect [Option ID = 2710]	
⁽¹⁾ The major product formed in the following $Me_{0,C}$ $Me_{0,C}$	g reaction is:
(Me ₃	S()2NU
Question ID = 723]	
0.014	
MeO ₂ C, OSIMe ₃	







www.FirstRanker.com www.FirstRanker.com

1. N9 [Option I 2. N7 [Option I 3. N1 [Option I 4. N3 [Option I	) = 2827] ) = 2825]		
Correct Answ • N7 [Option]	SF 1-		
54) The m	lecular geometry of IF₅ is		
[Question ID	= 672]		
	m [Option ID = 2688]		
2. Square pyra	idal [Option ID = 2686]		
<ol> <li>Trigonal plan</li> <li>Bent [Option</li> </ol>	ar [Option ID = 2685] ID = 26871		
Correct Answ	ar 1- nidal [Option ID = 2686]		
<ul> <li>Square pyra</li> </ul>	iidai [Updon 1D = 2000]		
1. MeO ₂ C	2. CH ₂ N ₂	^{/4} ₂ (CO ₂ Me) ₂	
4.	[Option ID = 2815]		
Correct Answ CC MeO ₂ C	r :- 2Me 		
56) The ma	or product of the reaction given below	is:	
	Me		
	h = h	i/liq.NH ₃	
		NH4CI	







www.FirstRanker.com



# Firstranker.com









FirstRanker.com www.FirstRanker.com www.FirstRanker.com ,  $K^+$  ion packed with  $C_2^{2-}$  ions [Option ID = 2702] Negatively charged hexagonal carbon layers with intercalated K⁺ ions [Option ID = 2703] An expanded diamond lattice with K⁺ ions in the tetrahedral holes [Option ID = 2704] K* -ion closed packed with polyhedral C8 ions Correct Answer :-Negatively charged hexagonal carbon layers with intercalated K⁺ ions [Option ID = 2703] 66) The IUPAC name for the following molecule is: [Question ID = 729] 1. (2Z, 4Z)-3, 4-dibromo hepta-2, 4-diene [Option ID = 2914] 2. (2E, 4E)-3, 4-dibromo hepta-2, 4-diene [Option ID = 2915] 3. (2E, 4Z)-3, 4-dibromo hepta-2, 4-diene [Option ID = 2916] 4. (2Z, 4E)-3, 4-dibromo hepta-2, 4-diene [Option ID = 2913] Correct Answer :- (2E, 4Z)-3, 4-dibromo hepta-2, 4-diene [Option ID = 2916] 67) Saturated solution of KNO3 is used to make 'salt bridge' because-[Question ID = 765] KNO3 is highly soluble in water velocity of K+ is greater than that of NO3velocity of NO3 is greater than that of K+ velocity of both K+ and NO3- are nearly the same 4 Correct Answer :velocity of both K+ and NO3- are nearly the same 68) In the following reaction the major product formed is: MeC 1. Me₂NH MgSO4 2. HBr heat [Question ID = 724] MeC MeC Me





www.FirstRanker.com



FirstRanker.com www.FirstRanker.com www.FirstRanker.com

[Question ID = 766]	
1. 512 times [Option ID = 3064]	
<ol> <li>256 times [Option ID = 3063]</li> </ol>	
<ol> <li>128 times [Option ID = 3062]</li> <li>64 times [Option ID = 3061]</li> </ol>	
Correct Answer :-	
<ul> <li>512 times [Option ID = 3064]</li> </ul>	
71)H++IO ₃ ·+I·	<u>I2 + H2O</u>
The restion is not belowed. If the	reaction is belowed using the smallest whole number
coefficients possible, the coefficient	reaction is balanced using the smallest whole number ts for I- will be:
[Question ID = 670]	
1. 2 [Option ID = 2678] 2. 5 [Option ID = 2680]	
3. 1 [Option ID = 2677]	
4. 3 [Option ID = 2679]	G
Correct Answer :-	
<ul> <li>5 [Option ID = 2680]</li> </ul>	
72) Arrange the following compounds	in decreasing order of IR stretching frequency of C=O
0 0 0	0
	L L L L L L L L L L L L L L L L L L L
U U U	
i i ii	
	iv
[Question ID = 731]	
1. iv > i > ii > iii [Option ID = 2924]	
2. II > I > III > IV [Option ID = 2923]	
i > ii > iii > iv [Option ID = 2921]	
(opposite = 111)	
Correct Answer :-	
. ii > ii > ii > iv [Option ID = 2922]	
73) MnO.+ I+	$H^+ = Mn^{2+} + IO_{3^{-}} + H_2O$
INTRO-4	
The correct balanced one will be:	
[Question ID = 690]	
[Question ID = 690] MnO ₄ -: IO ₃ - is 1:1	
[Question ID = 690]	
[Question ID = 690] MnO ₄ -: IO ₃ - is 1:1	



www.FirstRanker.com

Correct Answer :-		
MnO ₄ [•] : I [•] in (	:5 [Option ID = 2758]	
(4) In the follow	ing reaction sequence, the structure	of the productic:
In the follow	ing reaction sequence, the structures	or the product is.
	+ CHCl3 PhCOOCOPh	
Question ID = 720		
ClgC		
~	[Option ID = 2879]	
	n ID = 2878]	
	n 10 = 2070)	
ÇCI3	ion ID = 2890]	
S		
	stion ID = 2877]	
Correct Answer :-		
CCI3		
	stion ID = 2877]	
⁽⁵⁾ The major p	oduct formed in the sulphuric acid m	nediated rearrangement of compound is:
	Me Conc. H ₂ SO ₄	
	C C C C C C C C C C C C C C C C C C C	-
Question ID = 722		
Me		
. [0	ation ID = 2886]	
$\square$		
Me	[Option ID = 2888]	
Me		
$\rightarrow$		
Me	[Option ID = 2885]	
$\cap$		
Me		
Me [0	ption ID = 2887]	





rirstnanker.com Firstranker's choice



www.FirstRanker.com www.FirstRanker.com

	aqua's solution of an optically pure compound of conc. 100 mg in 1 ml of water and asured in sample of 5 cm length was found to be -3° the specific rotation is
[Questio	n ID = 732]
-6 °C	[Option ID = 2927]
+6 *0	
2	[Option ID = 2928]
-60 °	[Option ID = 2926]
-30 °	
4.	[Option ID = 2925]
-60°	Answer :-
-00	[Option ID = 2926]
80) A.m	onoatomic gas following Fermi-Dirac statistics begins to follow Maxwell-Boltzmann statistics at: [Question ID = 735]
	Temperature and low density [Option ID = 2937]
2. High	Temperature and high density [Option ID = 2940]
	Temperature and high density [Option ID = 2938] Temperature and low density [Option ID = 2939]
Correct	Answer :-
<ul> <li>High</li> </ul>	Temperature and low density [Option ID = 2939]
81) The	Dulong and Petit's Law says that the molar heat capacity of elements is: [Question ID = 741]
100	al mol ⁻¹ K ⁻¹ [Option ID = 296-1]
2 6 Ca	1 mol-1 K-1 [Option ID = 2961]
	cal mol ⁻¹ K ⁻¹ [Option ID = 2963]
3 Cal	l mol ⁻¹ K ⁻¹ [Option ID = 2962]
Correct	Answer :-
6 Ca	1 mol ⁻¹ K ⁻¹ [Option ID = 2961]
82) Wha	it is the most common natural form in which fluorine is found on earth?
[Questio	n ID = 684]
	poride ion in various minerals [Option ID = 2735]
	k acid HF (aq) [Option ID = 2734] ous fluorocarbon compounds in the atmosphere. [Option ID = 2736]
4. As XeF	2 (s) [Option ID = 2733]
	Answer :-
<ul> <li>As a fl</li> </ul>	uoride ion in various minerals [Option ID = 2735]
	at is the correct form of Stirling's approximation?
83) Wh-	
	n ID = 738]
[Questio	n ID = 738] = x lnx - x [Option ID = 2950]



www.FirstRanker.com www.FirstRanker.com

	[Option ID = 2952]
	$\mathbf{x}! = \mathbf{x} \ln \mathbf{x} - \mathbf{x}$ [Option ID = 2950]
	What is the total energy of one mole of an ideal monoatomic gas in terms of Boltzmann's Constant (k), Avogadro's number (N) erature (T)
[Que	stion ID = 739]
2. (3) 3. (1)	IkT [Option ID = 2953] 2) NkT [Option ID = 2956] 2) NkT [Option ID = 2955] T [Option ID = 2954]
	ect Answer :- 2) NkT [Option ID = 2956]
1. D 2. 3 3. 1	The following equation is associated with the relationship between the diffusion current and the concentration of the depolari in polarography: [Question ID = 753] ebye-Huckel equation [Option ID = 3009] itern-Volmer equation [Option ID = 3010] iyquist equation [Option ID = 3012] Ikovic equation [Option ID = 3011]
Corn	ect Answer :-
	Ilkovic equation [Option ID = 3011]
3. I 4. P	Brackett Series [Option ID = 2987] Jalmer Series [Option ID = 2986] fund Series [Option ID = 2988] ect Answer :-
	Lyman Series [Option ID = 2985]
87)	Which of the following reactions best classified as an oxidative addition? [Question ID = 701]
	$\operatorname{Cr}(\operatorname{CO}_{6}] + \operatorname{Br} \rightarrow [\operatorname{Cr}(\operatorname{CO}_{5}\operatorname{Br}]] + \operatorname{CO}_{[\operatorname{Option} 1D = 2801]}$
, [I	$t(NH_3)Cl_3$ + $NH_3 \rightarrow Pt(NH_3)_2Cl_2$ +Cl [Option ID = 2803]
	$Pt{P(C_2H_5)_3}_2 HCl] + HCl \rightarrow [Pt{P(C_2H_5)_3}_2 (H)_2Cl_2]$
4	$\operatorname{InH}(\operatorname{CO}_{5}] + \operatorname{CF}_{2} = \operatorname{CF}_{2} \rightarrow [\operatorname{Mn}(\operatorname{CF}_{2}\operatorname{CF}_{2}\operatorname{H})(\operatorname{CO}_{5}]$ [Option ID = 2804]
Corr	ect Answer :-
	$\operatorname{InH}(\operatorname{CO}_5] + \operatorname{CF}_2 = \operatorname{CF}_2 \rightarrow [\operatorname{Mn}(\operatorname{CF}_2\operatorname{CF}_2\operatorname{H})(\operatorname{CO})_5]$ [Option ID = 2804]
	Which of the following is required for both generated time and for more than 5 10 metrics 10 metrics 10 metrics
	Which of the following is required for both paramagnetism and ferromagnetism? [Question ID = 698]
	per exchange [Option ID = 2791] paired electrons [Option ID = 2792]
3. Lo	w-spin electron configuration [Option ID = 2790] ang oxidizing conditions [Option ID = 2789]
	and exercised computed (where its = vices)

www.FirstRanker.com

<ol> <li>Transmission electron microscopy [Option ID = 3039]</li> <li>Equilibrium sedimentation [Option ID = 3038]</li> </ol>
Intrinsic viscosity measurement [Option ID = 3040]     Dynamic light scattering [Option ID = 3037]
Correct Answer :- Transmission electron microscopy [Option ID = 3039]
90) Which of the following is NOT a known relatively stable compound of uranium? [Question ID = 687]
1. UF6 [Option ID = 2745]
2. UO _{3 [Option ID = 2748]}
3. UO2 [Option ID = 2747]
4. U(CH ₃ ) _{2 [Option ID = 2746]}
Correct Answer :- , U(CH ₃ ) ₂ [Option ID = 2746]
91) Which of the following compounds exist in stereoisomeric form? [Question ID = 681]
[Pt(NH ₃ ) ₃ Cl)] ⁺ [Option ID = 2721]
2. [Pt(NH ₃ ) ₂ Cl ₂ ] [Option ID = 2724]
3. [Pt(NH ₃ )Cl ₃ ]- [Option ID = 2722]
4. [PtCl_] ²⁻ [Option ID = 2723]
Correct Answer :-
$[Pt(NH_3)_2Cl_2]$ [Option ID = 2724]
92) Which of the following statement is not true? [Question ID = 745]
1. Methane is a spherical top molecule (Option ID = 2978)
<ol> <li>Chloroform is a symmetric top molecule [Option ID = 2980]</li> <li>Vinyl chloride is a symmetric top molecule [Option ID = 2979]</li> </ol>
<ol> <li>Water is an asymmetric top molecule [Option ID = 2977]</li> </ol>
Correct Answer :-
Vinyl chloride is a symmetric top molecule [Option ID = 2979]
93) Which of the following is a n-type semiconductor? [Question ID = 696]
1. Silicon carbide [Option ID = 2784]
2. Silicon [Option ID = 2781] 3. Arsenic doped silicon [Option ID = 2783]
4. Gallium doped silicon [Option ID = 2782]
Correct Answer :-
Arsenic doped silicon [Option ID = 2783]
94) Which of the statement is not true? [Question ID = 746]
1. Franck Condon Principle states that during electronic transition the internuclear distance of a molecule does not change [Option ID = 2983]
<ol> <li>The intensity of a fundamental vibrational transition is higher than that of a first overtone transition. [Option ID = 2984]</li> <li>Morse equation represents the energy expression of a simple harmonic oscillator [Option ID = 2982]</li> </ol>
<ol> <li>The energy spacing between various vibrational levels are the same in a simple harmonic oscillator [Option ID = 2981]</li> </ol>
Correct Answer :-
<ul> <li>Franck Condon Principle states that during electronic transition the internuclear distance of a molecule does not change [Option ID = 2983]</li> </ul>



www.FirstRanker.com

### www.FirstRanker.com

95) Which of the statement is true? [Question ID = 752]	
1. The mean ionic activity coefficients of aqueous NaCl solution and aqueous KBr solution, both at	low concentrations, are independent of their respective
ionic strengths [Option ID = 3008]	
2. The mean ionic activity coefficient of aqueous NaCl solution at low concentration decreases with	
<ol> <li>The mean ionic activity coefficients of aqueous NaCl solution and aqueous KBr solution, both at their exception ionic attention (Option ID = 2007).</li> </ol>	low concentrations, vary differently upon increase of
their respective ionic strengths [Option ID = 3007] 4. The mean ionic activity coefficient of aqueous NaCl solution at low concentration increases with in	venesse in its ionic strength (Ontion ID = 3005)
- The mean rate accurate country countrate of aqueous more assumed to the concentration metabolic meta-	ereac in ta kine ar organ [option as - 5005]
Correct Answer :-	
The mean ionic activity coefficient of aqueous NaCl solution at low concentration decreases of	with increase in its ionic strength [Option ID = 3006]
96) The highest temperature that can be achieved due to a single normal mode of vibra 757]	tion in a solid crystal is known as: [Question ID =
1. Debye Temperature [Option ID = 3026]	
2. Theta Temperature [Option ID = 3027]	
3. Curie Temperature [Option ID = 3025]	
4. Flory Temperature [Option ID = 3028]	
Correct Answer :-	
Debye Temperature [Option ID = 3026]	
97) Which is not a scientific site? [Question ID = 691]	
1. Research Gate [Option ID = 2763]	
2. Scopus [Option ID = 2761]	
3. Web of Science [Option ID = 2762]	
4. Google Plus [Option ID = 2764]	
Correct Answer :-	
Google Plus [Option ID = 2764]	
98) According to the Michaelis Menten equation for unimolecular reactions: [Question I	D = 7511
<ol> <li>The rate is first order at low pressure, but becomes aero order at high pressure [Option ID = 3</li> </ol>	
<ol><li>The rate is zero order at both low and high pressures [Option ID = 3002]</li></ol>	
<ol> <li>The rate is zero order at low pressure, but becomes has order at high pressure [Option ID = 300</li> <li>The rate is first order at both low and high pressure [Option ID = 2001]</li> </ol>	
<ol><li>The rate is first order at both low and high pressures [Option ID = 3001]</li></ol>	
Correct Answer :-	
<ul> <li>The rate is first order at low pressure, but becomes zero order at high pressure [Option ID =</li> </ul>	30031
99) The +1 exidation state is more stable than +3 exidation state for which of the follo	wing Group 13 element [Question ID = 694]
1. In [Option ID = 2775]	
2. B [Option ID = $2773$ ]	
3. Al [Option ID = 2774]	
4. TI [Option ID = 2776]	
Correct Answer :-	
TI [Option ID = 2776]	
• 11[obio110 - 2770]	
100) In how many ways can 10 distinguishable particles be placed in 3 boxes, so that t	here are 3 particles in first box, 5 in second and 2
100) In how many ways can 10 distinguishable particles be placed in 3 boxes, so that to in third? [Question ID = 737]	here are 3 particles in first box, 5 in second and 2
in third? [Question ID = 737]	here are 3 particles in first box, 5 in second and 2
in third? [Question ID = 737] 1. None of these [Option ID = 2948]	here are 3 particles in first box, 5 in second and 2
in third? [Question ID = 737] 1. None of these [Option ID = 2948] 2. 1520 ways [Option ID = 2946]	here are 3 particles in first box, 5 in second and 2
in third? [Question ID = 737] 1. None of these [Option ID = 2948]	here are 3 particles in first box, 5 in second and 2
In third? [Question ID = 737] 1. None of these [Option ID = 2948] 2. 1520 ways [Option ID = 2946] 3. 3260 ways [Option ID = 2947] 4. 2520 ways [Option ID = 2945]	here are 3 particles in first box, 5 in second and 2
in third? [Question ID = 737] 1. None of these [Option ID = 2948] 2. 1520 ways [Option ID = 2946] 3. 3260 ways [Option ID = 2947]	here are 3 particles in first box, 5 in second and 2

