

www.FirstRanker.com

DU MA MSc Statistics

Topic:- DU_J18_MA_STATS_Topic01

- In analysis of variance problem involving 3 treatments with 10 observations each, SSE= 399.6. Then the MSE is equal to: [Question ID = 2313]
- 1. 14.8 [Option ID = 9252]
- 2. 133.2 [Option ID = 9249]
- 3. 30 [Option ID = 9251]
- 4. 13.32 [Option ID = 9250]

Correct Answer :-

- 14.8 [Option ID = 9252]
- 2) If the variability due to chance decreases, the value of F: [Question ID = 2309]
- 1. Decreases [Option ID = 9234]
- 2. Stay the same [Option ID = 9235]
- 3. Increases [Option ID = 9233]
- 4. Nothing can be said from given information [Option ID = 9236]

Correct Answer :-

- Increases [Option ID = 9233]
- 3) If an unbiased coin is flipped till a first Head occurs, then the sample space is: [Question ID = 2284]
- $_{1.}$ {H,TH} [Option ID = 9135]
- 2. {H,TH,TTH,TTTH,....}
- 3. {TH}
- {H} [Option ID = 9133]

Correct Answer :-

- 4) The listing of elements in population with distinct identifiable number is classified as: [Question ID = 2305]
- 1. Regularity experimental frame [Option ID = 9219]
- 2. Frame for experiment [Option ID = 9220]
- 3. Direct experimental frame [Option ID = 9217]
- 4. Indirect experimental frame [Option ID = 9218]

Correct Answer :-

- Frame for experiment [Option ID = 9220]
- 5) When there is rough linearity between the principal variable Y and the auxiliary variable X, but there is no proportionality, the link between Y and X can be exploited to improve simple random sample estimator by using:

[Question ID = 2307]

- 1. Both Ratio estimator and Regression estimator [Option ID = 9227]
- 2. Combined estimator [Option ID = 9228]
- Regression estimator [Option ID = 9226]
- 4. Ratio estimator [Option ID = 9225]

Correct Answer :-

- Regression estimator [Option ID = 9226]
- 6) In LSD with 5 treatments and one missing plot, the error degrees of freedom is: [Question ID = 2310]

www.FirstRanker.com

2. 11 [Option ID = 9239] 3. 12 [Option ID = 9240] 4. 16 [Option ID = 9237]
Correct Answer :- • 11 [Option ID = 9239]
7) In the context of characteristic function of a random variable, which one of the following statements is false? [Question ID = 2293]
It always exists. [Option ID = 9169] It is uniformly continuous on R. [Option ID = 9170] It is not independent of change of origin and scale. [Option ID = 9171] It characteristic function of sum of two random variables is same as the product of their individual characteristic functions, then the variables are independent. [Option ID = 9172]
Correct Answer :-
If characteristic function of sum of two random variables is same as the product of their individual characteristic functions, then the variables are independent. [Option ID = 9172]
8) The area under a normal curve between one standard deviation on either side of the mean is: [Question ID = 2285]
1. 95% [Option ID = 9138] 2. 68% [Option ID = 9139] 3. 60% [Option ID = 9140] 4. 99% [Option ID = 9137]
Correct Answer :- • 68% [Option ID = 9139]
9) In case of two attributes A and B if (A) = 30, (B) = 40, N = 200, then for A and B to be negatively associated the frequency of the class AB will be:
[Question ID = 2289]
1. 0 < (AB) < 6 [Option ID = 9155] 2. (AB) = 6 [Option ID = 9154] 3. (AB) = 0 [Option ID = 9153] 4. (AB) > 6 [Option ID = 9156]
Correct Answer :- + 0 < (AB) < 6 [Option ID = 9155]

10) Suppose that there is a chance for a newly constructed building to collapse, whether the design is faulty or not. The chance that the design is faulty is 10%. The chance that the building collapses is 95% if the design is faulty and otherwise it is 45%. If it is seen that the building has collapsed, then the probability that it is due to faulty design is: [Question ID = 2277]

```
1. 0.95 [Option ID = 9108]
```

2. 0.19 [Option ID = 9106]

3. 0.45 [Option ID = 9107]

4. 0.1 [Option ID = 9105]

Correct Answer :-

0.19 [Option ID = 9106]

 If ANOVA procedure is applied to the data obtained from 5 samples, where each sample contains 9 observations, then the degrees of freedom for critical value of F are: [Question ID = 2312]

1. 5 and 9 [Option ID = 9245]

2. 4and 44 [Option ID = 9247]

3. 4 and 40 [Option ID = 9248]

4. 4 and 8 [Option ID = 9246]

Correct Answer :-

4 and 40 [Option ID = 9248]

12) The ages of 7 family members are 2, 5, 12, 18, 38, 40 and 60 years respectively. After 5 years a new member aged x years is added. If the mean age of the family now goes up by 1.5 years, then the value of x (in years) is: [Question ID = 2287]

1. 2 [Option ID = 9146]

www.FirstRanker.com

3. 3 [Option ID = 9147]
 4. 4 [Option ID = 9148]

Correct Answer :-

2 [Option ID = 9146]

Consider the 2³ factorial experiment in blocks of 4 plots, involving three fertilizers N, P, and K each at two levels.

	Replicate I		Replicate II		Replicate III
Block 1	np, npk,(1),k	Block 3	pk, nk, (1), np	Block 5	(1), npk, nk, p
Block 2	p, n, pk, nk	Block 4	np, npk, p, k	Block 6	n, npk, p ,k

[Question ID = 2311]

- 1. NK, NPK, PK [Option ID = 9244]
- 2. PK, NPK,PN [Option ID = 9243]
- 3. NP, NK, PK [Option ID = 9241]
- 4. NP, NPK, NK [Option ID = 9242]

Correct Answer :-

An urn contains 3 white and 4 black balls. A ball is drawn at random, its colour is noted and returned to urn along with two additional balls of the same colour. If a ball is drawn again from the urn, then the probability that the ball drawn is white, is:

[Question ID = 2274]

- 1. 9 [Option ID = 9094]
 3 9
 [Option ID = 9093]
 3
- 3. 7 [Option ID = 909:

[Option ID = 9096]

Correct Answer :-

3 (Option ID = 9095)

Let $A = (a_{ij})$, where $a_{ij} = \begin{cases} 1, & i+j, \text{is even} \\ -1 & i+j, \text{is odd} \end{cases}$, be a square matrix of order $2k \times 2k$ and B be a column vector of order $2k \times 1$ with all elements as unity. Then the value of B'AB is:

[Question ID = 2273]

- 1. 0 [Option ID = 9089]
- 2 2k-1 [Option ID = 9091]
- $_{3.}$ $4k^2$ [Option ID = 9092]
- $_{4.}~2k^{2}~_{[Option~ID~=~9090]}$

Correct Answer :-

- . 0 [Option ID = 9089]
- Let X be a single observation from truncated Poisson distribution having probability mass function $P(X = x) = \frac{e^{-\theta} \theta^x}{x!(1-e^{-\theta})}$; x = 1, 2, 3, . The estimator $T = \begin{cases} 2, & x = 1, 3, 5, ... \\ 0, & x = 2, 4, 6, ... \end{cases}$ is

unbiased for:

[Question ID = 2302]

1.
$$1 + e^{-\theta}$$
 [Option ID = 9208] $\frac{1 - e^{-\theta} - e^{-2\theta}}{1 - e^{-\theta}}$ [Option ID = 920 $\frac{1 - e^{-2\theta}}{1 - e^{-2\theta}}$

3.
$$1-e^{-\theta}$$
 [Option ID = 9206]
 $1-2e^{-\theta}$
4. $1-e^{-\theta}$ [Option ID = 9207]

Correct Answer :-

$$\begin{array}{c}
1 + e^{-\theta} & \text{[Option ID = 9208]} \\
\frac{1 - e^{-2\theta}}{1 - e^{-\theta}} & \text{[Option ID = 9206]}
\end{array}$$

17) If v, is the absolute moment of order r about origin zero of a distribution, then:

[Question ID = 2281]

$$v_r^{2r} = v_{r-1}^r v_{r+1}^r$$
 [Option ID = 9121]
2. none of the above [Option ID = 9124]
3. $v_r^{2r} \ge v_{r-1}^r v_{r+1}^r$ [Option ID = 9122]
4. $v_r^{2r} \le v_{r-1}^r v_{r+1}^r$ [Option ID = 9123]

Correct Answer :-

$$v_r^{2r} \le v_{r-1}^r v_{r+1}^r$$
 [Option ID = 9123]

Suppose that the five random variables $X_1, X_2, ..., X_5$ are independent and each has standard normal distribution. A constant c such that the random variable $\frac{c(X_1+X_2)}{\left(X_3^2+X_4^2+X_5^2\right)^{\frac{1}{2}}}$ will have a t-distribution has value:

[Question ID = 2283]

$$\frac{3}{2}$$
[Option ID = 9131]
$$\sqrt{\frac{3}{2}}$$

www.FirstRanker.com

3.
$$\sqrt{\frac{2}{3}}$$
[Option ID = 9132]
 $\sqrt{\frac{3}{2}}$
[Option ID = 9139]

Correct Answer :-

$$\sqrt{\frac{3}{2}}$$
[Option ID = 9130

The two candidates A and B for the presidentship of a Students' Union were asked to rank 4 issues in the order of their perceived importance. Their responses are listed besides the issues.

ISSUE	Ranking by candidates		
	A	В	
Crime against girl students	1	. 2	
Corruption in sports	4	3	
Education system	3	4	
Unemployment	2	1	

Based on this data, Spearman's Rank Correlation Coefficient is:

[Question ID = 2291]

1.
$$\frac{1}{5}$$
 [Option ID = 9161] $\frac{3}{5}$ [Option ID = 9163] $\frac{4}{5}$ [Option ID = 9164] $\frac{2}{5}$ [Option ID = 9162]

Correct Answer :-

20) If A is non-singular matrix of order 4×4 and determinant of Adj(A) is 4 then the value of |2Adj(3A)| is:

[Question ID = 2269]

1.
$$(3\sqrt{2})^{12}$$
 [Option ID = 9074]

Correct Answer :-

$$(3\sqrt{2})^{12}$$
[Option ID = 9074]

Nine elements of which 4 are of one kind and 5 are of a different kind are arranged in a sequence. If R is the number of runs, then P(R=2) is equal to:

[Question ID = 2280]

$$\frac{1}{1.000} \frac{1}{126} = \frac{1$$

Correct Answer :-

Let X be a random variable with probability density function $f \in (f_0, f_1)$, where $f_0(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases}, \quad f_1(x) = \begin{cases} 4x^3, & 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases} \text{ and } W_0 = \left\{x : x > c\right\} \text{ is the }$ rejection region for testing null hypothesis Ho: f = fo against Hi: f = fi, with level of significance \alpha. Then power of the most powerful test is:

[Question ID = 2298]

1.
$$\alpha - 2\alpha^2$$
 [Option ID = 9191]
2. $2\alpha - \alpha^2$ [Option ID = 9189]
3. $2(\alpha - \alpha^2)$ [Option ID = 9192]
4. $\alpha - \alpha^2$ [Option ID = 9190]

Correct Answer :-

$$2\alpha - \alpha^2$$
 [Option ID = 9189]

The estimator T_0 is MVU estimator for $\gamma(\theta)$ and T_1 is any other unbiased estimator for $\gamma(\theta)$ with efficiency 0.0169, then correlation between T₀ and T₁ is:

[Question ID = 2300]

www.FirstRanker.com

4. 0.0169 [Option ID = 9199]

Correct Answer :-

0.13 [Option ID = 9198]

Let X follows exponential distribution with mean θ . For testing the null hypothesis $H_0: \theta=3$ against $H_1: \theta=5$, a test gives rejection region $W_0=\left\{x,\ x\geq 4.5\right\}$. The size of the type – II error is:

[Question ID = 2299]

- 1. e⁻²⁰ [Option ID = 9196]
- 2. 1 e⁻²⁰ [Option ID = 9194]
- 3. 1-e^{-4.5} [Option ID = 9193]

4. e [Option ID = 9195]

Correct Answer :-

The area enclosed by curves $y^2=x$, $y^2=3x-1$ where $0 \le x \le \frac{1}{2}$ is:

[Question ID = 2267]

- $\frac{\sqrt{2}}{3}$ 1. Option ID = 9060
- 9 (Option ID = 9068
- $\frac{\sqrt{2}}{9}$
- 3. 9 [Option ID = 9065] $2\sqrt{2}$
- 9 [Option ID = 9067]

Correct Answer :-

$$2\sqrt{2}$$

Option ID:

26) If A is a 3×3 matrix with Given values -1, 0 and 1 then value of 6A is:

[Question ID = 2265]

$$\begin{bmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
[Option ID = 9060]

3 1 5

[Option ID = 9058]

www.FirstRanker.com

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
[Option ID = 9059]
$$\begin{bmatrix} -3 & 9 & 0 \\ 9 & -3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
[Option ID = 9057]

Correct Answer :-

Let $x_1 = 2.4$, $x_2 = 9.2$, $x_3 = 5.2$, $x_4 = 4.1$, $x_5 = 2.1$ and $x_6 = 3.1$ be the observed values of a random variable of size 6 from uniform distribution with parameters $(\theta - 2, \theta + 6)$ where $\theta > 0$ is unknown, then MLE of θ is:

[Question ID = 2295]

- 1. 3.5 [Option ID = 9178]
- 2. 4.5 [Option ID = 9179]
- 3. 9.2 [Option ID = 9180]
- 4. 2.5 [Option ID = 9177]

Correct Answer :-

- 3.5 [Option ID = 9178]
- Let X₁, X₂,..., X_n be a random sample from Cauchy distribution with location parameter θ and scale parameter 1. The Cramer Rao lower bound for unknown parameter θ, is:

[Question ID = 2303]

- 1. 2/n [Option ID = 9212]
- 2. 4/n [Option ID = 9211]
- 3. 1/n [Option ID = 9209]
- 3/n [Option ID = 9210]

Correct Answer :-

- . 2/n [Option ID = 9212]
- Suppose that p(x, y), the joint probability mass function (p.m.f.) of discrete random variables X and Y, is given by:

$$p(0,0) = 0.4$$
, $p(0,1) = 0.2$, $p(1,0) = 0.1$, $p(1,1) = 0.3$.

Then the conditional p.m.f. of X, given that Y=1, is:

[Question ID = 2290]

$$p_{X|Y}(0|1) = \frac{3}{5}, p_{X|Y}(1|1) = \frac{2}{5}$$
 [Option ID = 9160]

$$p_{X|Y}(0|1) = \frac{2}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$

$$p_{X|Y}(0|1) = \frac{4}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$

5 [Option ID = 91]

www.FirstRanker.com

$$p_{X|Y}(0|1) = \frac{1}{5}, p_{X|Y}(1|1) = \frac{2}{5}$$
[Option ID = 9159]

Correct Answer :-

$$p_{X|Y}(0|1) = \frac{2}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$

30) The frequency distribution of percentage of marks obtained by a group of 229 students is given below with two missing frequencies marked as f₁ and f₂:

Percentage of marks	No. of students	Percentage of marks	No. of students
10-20	12	50-60	\mathbf{f}_2
20-30	30	60-70	25
30-40	\mathbf{f}_1	70-80	18
40-50	65		

If the median of the distribution is 46, then the missing values of f1 and f2 are:

[Question ID = 2278]

$$_{1.}$$
 $f_1 = 34$, $f_2 = 45$ [Option ID = 9109]

$$f_1 = 8$$
, $f_2 = 71$ [Option ID = 9111]

$$f_1 = 66$$
, $f_2 = 13$ [Option ID = 9110]

Correct Answer :-

$$f_1 = 34$$
, $f_2 = 45$ [Option ID = 9109]

The equation whose roots are cubes of roots of equation $x^3 - x = 0$ is:

[Question ID = 2266]

$$x^3 - 9x = 0$$
 [Option ID = 9061]

$$_{2.} x^{3} + x = 0$$
 [Option ID = 9063]

3.
$$x^3 - x = 0$$
 [Option ID = 9064]

$$x^3 + x^2 + x - 1 = 0$$
 [Option ID = 9062]

Correct Answer :-

$$x^3 - x = 0$$
 [Option ID = 9064]

32) Let X₁, X₂,...,X_n be a random sample of size n from N(θ₁, 9θ₂), then the estimate of (θ₁, θ₂) using the method of moments is:

[Question ID = 2296]

$$\left(\frac{1}{9n}\sum_{i=1}^{n}X_{i}, \frac{1}{2n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right)$$

$$\begin{array}{l} \left(\frac{1}{2n}\sum_{i=1}^{n}~X_{i},\frac{1}{9}\sum_{i=1}^{n}~\left(X_{i}-\overline{X}\right)^{2}\right)_{\text{[Option ID = 9182]}} \\ \left(\frac{1}{9}\sum_{i=1}^{n}~X_{i},\frac{1}{2n}\sum_{i=1}^{n}~\left(X_{i}-\overline{X}\right)^{2}\right)_{\text{[Option ID = 9184]}} \\ \left(\frac{1}{n}\sum_{i=1}^{n}~X_{i},\frac{1}{9n}\sum_{i=1}^{n}~\left(X_{i}-\overline{X}\right)^{2}\right)_{\text{[Option ID = 9181]}} \end{array}$$

$$\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}, \frac{1}{9n}\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right)$$
[Option ID = 9]

33) If the observations recorded on five sampled items are 3, 4, 5, 6, 7, then the unbiased estimate of the population variance is:

[Question ID = 2276]

- 1. O [Option ID = 9101]
- 2. 1 [Option ID = 9102]
- 3. 2 [Option ID = 9103]
- 4. [Option ID = 9104]

Correct Answer :-

The equation of tangents at origin to the curve $x^2(a^2-x^2)=y^2(a^2+x^2)$ is:

[Question ID = 2271]

- y = ±ax [Option ID = 9084]
- $y = \pm x$ [Option ID = 9083]
- $x = \pm ay$ [Option ID = 9081]
- y = ±2x [Option ID = 9082]

Correct Answer :-

$$y = \pm x$$
 [Option ID = 9083]

35) An um contains 5 red and 3 black balls. Balls are drawn, one-by-one, with replacement till the 3rd red ball is drawn. The probability that 3rd red ball occurs at the 5th draw is:

[Question ID = 2292]

- 53

$$\frac{6.5^3}{8^5}$$
 [Option ID = 9167]

36) The slope of tangents at double point (x, y) to the curve f (x, y) = 0 is given by solution of the quadratic equation:

[Question ID = 2272]

$$\frac{\partial^2 f}{\partial x^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial^2 f}{\partial x \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial y^2} = 0$$

1.
$$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial^2 f}{\partial x \partial y} \left(\frac{dy}{dx} \right) + 2 \frac{\partial^2 f}{\partial x^2} = 0$$
[Option ID = 9088]

$$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial^2 f}{\partial x \, \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial x^2} = 0$$

$$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + 2 \frac{\partial^2 f}{\partial x \, \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial x^2} = 0$$

$$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + 2 \frac{\partial^2 f}{\partial x \, \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial x^2} = 0$$

Let $X_1, X_2,..., X_n$ be a random sample of size n from $N(\theta, \sigma^2)$, σ^2 is known, then pivotal statistics used to find $100(1-\alpha)$ % confidence interval for θ is:

[Question ID = 2297]

$$2(\overline{X} - \theta)$$
[Option ID = 9185]

$$X_{(n)} - \theta$$

$$X_{(1)} - \theta$$

$$\sqrt{n}(\bar{X}-\theta)$$

Correct Answer :-

$$\sqrt{n}(\bar{X}-\theta)$$

The variance of unbiased estimator T of θ satisfy:

$$V_{\theta}(T) \ge \frac{1}{n E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)}$$

1. [Option ID = 9203]

$$V_{e}(T) \ge \frac{1}{-nE\left(\frac{\partial^{2} \log L}{\partial \theta^{2}}\right)}$$

$$V_{\theta}(T) \ge \frac{1}{n E\left(\frac{\partial \log L}{\partial \theta}\right)}$$

$$V_{\theta}(T) \ge \frac{1}{-E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)}$$

Correct Answer :-

$$V_{\theta}(T) \ge \frac{1}{-E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)}$$

39) If the correlation coefficient between two variables X and Y is 0.6, then the correlation coefficient between two new variables

$$U = \frac{X+6}{6}$$
 and $V = \frac{Y-6}{-6}$

is:

[Question ID = 2286]

- 2. -0.1 [Option ID = 9142]
- 3. -0.6 [Option ID = 9144]
- 4. 0.1 [Option ID = 9141]

Correct Answer :-

-0.6 [Option ID = 9144]

If
$$R = \frac{\sum_{i=1}^{n} (x_i - A)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
, $A \neq \overline{x}$, then R is:

[Question ID = 2279]

- 1. < 1 [Option ID = 9113]
- 2. #1 [Option ID = 9116]
- 1 [Option ID = 9115]
- 4. > 1 [Option ID = 9114]

Correct Answer :-

. > 1 [Option ID = 9114]

www.FirstRanker.com

41) If the area (under a normal density curve) to the left of the point x₁ is 0.4 and to the right of the point x_2 is 0.3, then x_1 and x_2 are such that:

[Ouestion ID = 2288]

- none of these [Option ID = 9152]
- 2. X₁ < X₂ [Option ID = 9149]
- $x_1 = x_2$ [Option ID = 9151]
- $x_1 > x_2$ [Option ID = 9150]

Correct Answer :-

- . x₁ < x₂ [Option ID = 9149]
- The solution of the linear differential equation $2e^{3x} \frac{dy}{dx} = 3e^{2y}$ with y(0) = 0 is:

[Question ID = 2268]

- $e^{3x} e^{-2y} = 0$ [Option ID = 9070]
- $e^{3x} + e^{2y} = 0$ [Option ID = 9072]
- $e^{3x} e^{2y} = 0$ [Option ID = 9071]
- $_{4} e^{-3x} e^{2y} = 0$ [Option ID = 9069]

Correct Answer :-

$$e^{3x} - e^{2y} = 0$$
 [Option ID = 9071]

43) An urn contains 2 white and 3 red balls. 15 balls are drawn one-by-one with replacement. The standard deviation of the number of white balls drawn is:

[Question ID = 2282]

- 1. 1 [Option ID = 9125]
- 2. √3.6 [Option ID = 9128]
- 2 [Option ID = 9126]
- 4. 3.6 [Option ID = 9127]

Correct Answer :-

$$\sqrt{3.6}$$
 [Option ID = 9128]

Variances of the sample mean under simple random sampling (Vran), under stratified sampling with proportional allocation (Vprop) and sampling with Neyman allocation (Vopt) obey which of the following order:

[Question ID = 2304]

- $V_{ram}\!\leq\!V_{opt}\!\leq\!\!V_{prop}_{\text{[Option ID = 9216]}}$
- $V_{ran} \le V_{prop} \le V_{opt}$ [Option ID = 9215]
- $V_{opt} \le V_{ran} \le V_{prop} [Option ID = 9213]$

- $V_{opt} \le V_{prop} \le V_{ran}$ [Option ID = 9214]
- $V_{opt} \le V_{prop} \le V_{ram}$ [Option ID = 9214]
- 45) If events A and B are independent, consider the statements:
 - 1. A and Be are independent
 - 2. Ac and B are independent
 - 3. Ac and Bc are independent

Then:

[Question ID = 2275]

- only 2 and 3 are true [Option ID = 9099]
- only 1 is true [Option ID = 9097]
- all 1, 2, and 3 are true. [Option ID = 9100]
- only 1 and 2 are true [Option ID = 9098]

Correct Answer :-

- all 1, 2, and 3 are true. [Option ID = 9100]

[Question ID = 2270]

- log a log b

- 1 [Option ID = 9080]
- log ab [Option ID = 9077]

Correct Answer :-

- log a log b [Option ID = 9078]
- 47) In a trivariate distribution if r₁₂ = r₂₃ = r₃₁ = ρ ≠ 1, then the value of R_{1,23} is

[Question ID = 2294]

$$\rho / \sqrt{1 + \rho}$$

$$1/\sqrt{1+\rho}$$

$$\frac{1}{1+\rho}$$

$$\sqrt{2} \rho / \sqrt{1+\rho}$$

Correct Answer :-

$$\sqrt{2} \rho / \sqrt{1 + \rho}$$
 [Option ID = 9173]

$$\text{If } \int\limits_0^\infty \, e^{-\left(a^2x^2+\frac{b^2}{x^2}\right)}\! dx = \frac{\sqrt{\pi}}{2a} \,\, e^{-2ab} \,\, \text{, then value of } \int\limits_0^\infty x^{-2} \, e^{-\left(a^2x^2+\frac{b^2}{x^2}\right)}\! dx \text{ is equal to:}$$

[Question ID = 2264]

1.
$$\frac{\sqrt{\pi}}{2b} e^{-2ab}$$
[Option ID = 9054]
$$\frac{\sqrt{\pi}}{2b} e^{-3ab}$$

[Option ID = 9055]

$$\frac{\sqrt{\pi}}{2b} e^{-4ab}$$
[Option ID = 9053]

4. 1 [Option ID = 9056]

Correct Answer :-

$$\frac{\sqrt{\pi}}{2b} e^{-2ab}$$
 [Option ID = 9054]

- 1. A census [Option ID = 9223]
- 2. A statistic [Option ID = 9224]
- 3. A Neilson audit [Option ID = 9222]
- 4. A sample [Option ID = 9221]

Correct Answer :-

- A census [Option ID = 9223]
- 50) Which one of the following statement is correct? [Question ID = 2308]

Systematic sampling is more precise than SRSWOR if heterogeneity of the whole population is more than the heterogeneity within systematic sample

- If $\rho_{wst} > 0$, then systematic sampling is more precise than stratified sampling [Option ID = 9232] Systematic sampling may always yield unbiased estimates if there are periodic
- features associated with the sampling interval.
- Systematic sampling is not very efficient in the presence of linear trend. [Option ID = 9229]

Systematic sampling is not very efficient in the presence of linear trend. [Option 1D = 9229]