www.FirstRanker.com #### DU MA MSc Statistics ### Topic:- DU_J18_MA_STATS_Topic01 - In analysis of variance problem involving 3 treatments with 10 observations each, SSE= 399.6. Then the MSE is equal to: [Question ID = 2313] - 1. 14.8 [Option ID = 9252] - 2. 133.2 [Option ID = 9249] - 3. 30 [Option ID = 9251] - 4. 13.32 [Option ID = 9250] #### Correct Answer :- - 14.8 [Option ID = 9252] - 2) If the variability due to chance decreases, the value of F: [Question ID = 2309] - 1. Decreases [Option ID = 9234] - 2. Stay the same [Option ID = 9235] - 3. Increases [Option ID = 9233] - 4. Nothing can be said from given information [Option ID = 9236] #### Correct Answer :- - Increases [Option ID = 9233] - 3) If an unbiased coin is flipped till a first Head occurs, then the sample space is: [Question ID = 2284] - $_{1.}$ {H,TH} [Option ID = 9135] - 2. {H,TH,TTH,TTTH,....} - 3. {TH} - {H} [Option ID = 9133] ### Correct Answer :- - 4) The listing of elements in population with distinct identifiable number is classified as: [Question ID = 2305] - 1. Regularity experimental frame [Option ID = 9219] - 2. Frame for experiment [Option ID = 9220] - 3. Direct experimental frame [Option ID = 9217] - 4. Indirect experimental frame [Option ID = 9218] #### Correct Answer :- - Frame for experiment [Option ID = 9220] - 5) When there is rough linearity between the principal variable Y and the auxiliary variable X, but there is no proportionality, the link between Y and X can be exploited to improve simple random sample estimator by using: ### [Question ID = 2307] - 1. Both Ratio estimator and Regression estimator [Option ID = 9227] - 2. Combined estimator [Option ID = 9228] - Regression estimator [Option ID = 9226] - 4. Ratio estimator [Option ID = 9225] #### Correct Answer :- - Regression estimator [Option ID = 9226] - 6) In LSD with 5 treatments and one missing plot, the error degrees of freedom is: [Question ID = 2310] ### www.FirstRanker.com | 2. 11 [Option ID = 9239]
3. 12 [Option ID = 9240]
4. 16 [Option ID = 9237] | |--| | Correct Answer :- • 11 [Option ID = 9239] | | 7) In the context of characteristic function of a random variable, which one of the following statements is false? [Question ID = 2293] | | It always exists. [Option ID = 9169] It is uniformly continuous on R. [Option ID = 9170] It is not independent of change of origin and scale. [Option ID = 9171] It characteristic function of sum of two random variables is same as the product of their individual characteristic functions, then the variables are independent. [Option ID = 9172] | | Correct Answer :- | | If characteristic function of sum of two random variables is same as the product of their individual characteristic functions, then the variables are independent. [Option ID = 9172] | | 8) The area under a normal curve between one standard deviation on either side of the mean is: [Question ID = 2285] | | 1. 95% [Option ID = 9138]
2. 68% [Option ID = 9139]
3. 60% [Option ID = 9140]
4. 99% [Option ID = 9137] | | Correct Answer :- • 68% [Option ID = 9139] | | | | 9) In case of two attributes A and B if (A) = 30, (B) = 40, N = 200, then for A and B to be negatively associated the frequency of the class AB will be: | | [Question ID = 2289] | | 1. 0 < (AB) < 6 [Option ID = 9155]
2. (AB) = 6 [Option ID = 9154]
3. (AB) = 0 [Option ID = 9153]
4. (AB) > 6 [Option ID = 9156] | | Correct Answer :- + 0 < (AB) < 6 [Option ID = 9155] | | | 10) Suppose that there is a chance for a newly constructed building to collapse, whether the design is faulty or not. The chance that the design is faulty is 10%. The chance that the building collapses is 95% if the design is faulty and otherwise it is 45%. If it is seen that the building has collapsed, then the probability that it is due to faulty design is: [Question ID = 2277] ``` 1. 0.95 [Option ID = 9108] ``` 2. 0.19 [Option ID = 9106] 3. 0.45 [Option ID = 9107] 4. 0.1 [Option ID = 9105] #### Correct Answer :- 0.19 [Option ID = 9106] If ANOVA procedure is applied to the data obtained from 5 samples, where each sample contains 9 observations, then the degrees of freedom for critical value of F are: [Question ID = 2312] 1. 5 and 9 [Option ID = 9245] 2. 4and 44 [Option ID = 9247] 3. 4 and 40 [Option ID = 9248] 4. 4 and 8 [Option ID = 9246] #### Correct Answer :- 4 and 40 [Option ID = 9248] 12) The ages of 7 family members are 2, 5, 12, 18, 38, 40 and 60 years respectively. After 5 years a new member aged x years is added. If the mean age of the family now goes up by 1.5 years, then the value of x (in years) is: [Question ID = 2287] 1. 2 [Option ID = 9146] ### www.FirstRanker.com 3. 3 [Option ID = 9147] 4. 4 [Option ID = 9148] Correct Answer :- 2 [Option ID = 9146] Consider the 2³ factorial experiment in blocks of 4 plots, involving three fertilizers N, P, and K each at two levels. | | Replicate I | | Replicate II | | Replicate III | |---------|---------------|---------|-----------------|---------|-----------------| | Block 1 | np, npk,(1),k | Block 3 | pk, nk, (1), np | Block 5 | (1), npk, nk, p | | Block 2 | p, n, pk, nk | Block 4 | np, npk, p, k | Block 6 | n, npk, p ,k | [Question ID = 2311] - 1. NK, NPK, PK [Option ID = 9244] - 2. PK, NPK,PN [Option ID = 9243] - 3. NP, NK, PK [Option ID = 9241] - 4. NP, NPK, NK [Option ID = 9242] Correct Answer :- An urn contains 3 white and 4 black balls. A ball is drawn at random, its colour is noted and returned to urn along with two additional balls of the same colour. If a ball is drawn again from the urn, then the probability that the ball drawn is white, is: [Question ID = 2274] - 1. 9 [Option ID = 9094] 3 9 [Option ID = 9093] 3 - 3. 7 [Option ID = 909: [Option ID = 9096] Correct Answer :- 3 (Option ID = 9095) Let $A = (a_{ij})$, where $a_{ij} = \begin{cases} 1, & i+j, \text{is even} \\ -1 & i+j, \text{is odd} \end{cases}$, be a square matrix of order $2k \times 2k$ and B be a column vector of order $2k \times 1$ with all elements as unity. Then the value of B'AB is: [Question ID = 2273] - 1. 0 [Option ID = 9089] - 2 2k-1 [Option ID = 9091] - $_{3.}$ $4k^2$ [Option ID = 9092] - $_{4.}~2k^{2}~_{[Option~ID~=~9090]}$ Correct Answer :- - . 0 [Option ID = 9089] - Let X be a single observation from truncated Poisson distribution having probability mass function $P(X = x) = \frac{e^{-\theta} \theta^x}{x!(1-e^{-\theta})}$; x = 1, 2, 3, . The estimator $T = \begin{cases} 2, & x = 1, 3, 5, ... \\ 0, & x = 2, 4, 6, ... \end{cases}$ is unbiased for: [Question ID = 2302] 1. $$1 + e^{-\theta}$$ [Option ID = 9208] $\frac{1 - e^{-\theta} - e^{-2\theta}}{1 - e^{-\theta}}$ [Option ID = 920 $\frac{1 - e^{-2\theta}}{1 - e^{-2\theta}}$ 3. $$1-e^{-\theta}$$ [Option ID = 9206] $1-2e^{-\theta}$ 4. $1-e^{-\theta}$ [Option ID = 9207] Correct Answer :- $$\begin{array}{c} 1 + e^{-\theta} & \text{[Option ID = 9208]} \\ \frac{1 - e^{-2\theta}}{1 - e^{-\theta}} & \text{[Option ID = 9206]} \end{array}$$ 17) If v, is the absolute moment of order r about origin zero of a distribution, then: [Question ID = 2281] $$v_r^{2r} = v_{r-1}^r v_{r+1}^r$$ [Option ID = 9121] 2. none of the above [Option ID = 9124] 3. $v_r^{2r} \ge v_{r-1}^r v_{r+1}^r$ [Option ID = 9122] 4. $v_r^{2r} \le v_{r-1}^r v_{r+1}^r$ [Option ID = 9123] Correct Answer :- $$v_r^{2r} \le v_{r-1}^r v_{r+1}^r$$ [Option ID = 9123] Suppose that the five random variables $X_1, X_2, ..., X_5$ are independent and each has standard normal distribution. A constant c such that the random variable $\frac{c(X_1+X_2)}{\left(X_3^2+X_4^2+X_5^2\right)^{\frac{1}{2}}}$ will have a t-distribution has value: [Question ID = 2283] $$\frac{3}{2}$$ [Option ID = 9131] $$\sqrt{\frac{3}{2}}$$ www.FirstRanker.com 3. $$\sqrt{\frac{2}{3}}$$ [Option ID = 9132] $\sqrt{\frac{3}{2}}$ [Option ID = 9139] Correct Answer :- $$\sqrt{\frac{3}{2}}$$ [Option ID = 9130 The two candidates A and B for the presidentship of a Students' Union were asked to rank 4 issues in the order of their perceived importance. Their responses are listed besides the issues. | ISSUE | Ranking by
candidates | | | |-----------------------------|--------------------------|-----|--| | | A | В | | | Crime against girl students | 1 | . 2 | | | Corruption in sports | 4 | 3 | | | Education system | 3 | 4 | | | Unemployment | 2 | 1 | | Based on this data, Spearman's Rank Correlation Coefficient is: [Question ID = 2291] 1. $$\frac{1}{5}$$ [Option ID = 9161] $\frac{3}{5}$ [Option ID = 9163] $\frac{4}{5}$ [Option ID = 9164] $\frac{2}{5}$ [Option ID = 9162] Correct Answer :- 20) If A is non-singular matrix of order 4×4 and determinant of Adj(A) is 4 then the value of |2Adj(3A)| is: [Question ID = 2269] 1. $$(3\sqrt{2})^{12}$$ [Option ID = 9074] Correct Answer :- $$(3\sqrt{2})^{12}$$ [Option ID = 9074] Nine elements of which 4 are of one kind and 5 are of a different kind are arranged in a sequence. If R is the number of runs, then P(R=2) is equal to: [Question ID = 2280] $$\frac{1}{1.000} \frac{1}{126} = \frac{1$$ Correct Answer :- Let X be a random variable with probability density function $f \in (f_0, f_1)$, where $f_0(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases}, \quad f_1(x) = \begin{cases} 4x^3, & 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases} \text{ and } W_0 = \left\{x : x > c\right\} \text{ is the }$ rejection region for testing null hypothesis Ho: f = fo against Hi: f = fi, with level of significance \alpha. Then power of the most powerful test is: [Question ID = 2298] 1. $$\alpha - 2\alpha^2$$ [Option ID = 9191] 2. $2\alpha - \alpha^2$ [Option ID = 9189] 3. $2(\alpha - \alpha^2)$ [Option ID = 9192] 4. $\alpha - \alpha^2$ [Option ID = 9190] Correct Answer :- $$2\alpha - \alpha^2$$ [Option ID = 9189] The estimator T_0 is MVU estimator for $\gamma(\theta)$ and T_1 is any other unbiased estimator for $\gamma(\theta)$ with efficiency 0.0169, then correlation between T₀ and T₁ is: [Question ID = 2300] # www.FirstRanker.com 4. 0.0169 [Option ID = 9199] Correct Answer :- 0.13 [Option ID = 9198] Let X follows exponential distribution with mean θ . For testing the null hypothesis $H_0: \theta=3$ against $H_1: \theta=5$, a test gives rejection region $W_0=\left\{x,\ x\geq 4.5\right\}$. The size of the type – II error is: [Question ID = 2299] - 1. e⁻²⁰ [Option ID = 9196] - 2. 1 e⁻²⁰ [Option ID = 9194] - 3. 1-e^{-4.5} [Option ID = 9193] 4. e [Option ID = 9195] Correct Answer :- The area enclosed by curves $y^2=x$, $y^2=3x-1$ where $0 \le x \le \frac{1}{2}$ is: [Question ID = 2267] - $\frac{\sqrt{2}}{3}$ 1. Option ID = 9060 - 9 (Option ID = 9068 - $\frac{\sqrt{2}}{9}$ - 3. 9 [Option ID = 9065] $2\sqrt{2}$ - 9 [Option ID = 9067] Correct Answer :- $$2\sqrt{2}$$ Option ID: 26) If A is a 3×3 matrix with Given values -1, 0 and 1 then value of 6A is: [Question ID = 2265] $$\begin{bmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$ [Option ID = 9060] 3 1 5 [Option ID = 9058] www.FirstRanker.com $$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$ [Option ID = 9059] $$\begin{bmatrix} -3 & 9 & 0 \\ 9 & -3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$ [Option ID = 9057] Correct Answer :- Let $x_1 = 2.4$, $x_2 = 9.2$, $x_3 = 5.2$, $x_4 = 4.1$, $x_5 = 2.1$ and $x_6 = 3.1$ be the observed values of a random variable of size 6 from uniform distribution with parameters $(\theta - 2, \theta + 6)$ where $\theta > 0$ is unknown, then MLE of θ is: [Question ID = 2295] - 1. 3.5 [Option ID = 9178] - 2. 4.5 [Option ID = 9179] - 3. 9.2 [Option ID = 9180] - 4. 2.5 [Option ID = 9177] Correct Answer :- - 3.5 [Option ID = 9178] - Let X₁, X₂,..., X_n be a random sample from Cauchy distribution with location parameter θ and scale parameter 1. The Cramer Rao lower bound for unknown parameter θ, is: [Question ID = 2303] - 1. 2/n [Option ID = 9212] - 2. 4/n [Option ID = 9211] - 3. 1/n [Option ID = 9209] - 3/n [Option ID = 9210] Correct Answer :- - . 2/n [Option ID = 9212] - Suppose that p(x, y), the joint probability mass function (p.m.f.) of discrete random variables X and Y, is given by: $$p(0,0) = 0.4$$, $p(0,1) = 0.2$, $p(1,0) = 0.1$, $p(1,1) = 0.3$. Then the conditional p.m.f. of X, given that Y=1, is: [Question ID = 2290] $$p_{X|Y}(0|1) = \frac{3}{5}, p_{X|Y}(1|1) = \frac{2}{5}$$ [Option ID = 9160] $$p_{X|Y}(0|1) = \frac{2}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$ $$p_{X|Y}(0|1) = \frac{4}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$ 5 [Option ID = 91] www.FirstRanker.com $$p_{X|Y}(0|1) = \frac{1}{5}, p_{X|Y}(1|1) = \frac{2}{5}$$ [Option ID = 9159] Correct Answer :- $$p_{X|Y}(0|1) = \frac{2}{5}, p_{X|Y}(1|1) = \frac{3}{5}$$ 30) The frequency distribution of percentage of marks obtained by a group of 229 students is given below with two missing frequencies marked as f₁ and f₂: | Percentage
of marks | No. of students | Percentage
of marks | No. of students | |------------------------|-----------------|------------------------|-----------------| | 10-20 | 12 | 50-60 | \mathbf{f}_2 | | 20-30 | 30 | 60-70 | 25 | | 30-40 | \mathbf{f}_1 | 70-80 | 18 | | 40-50 | 65 | | | If the median of the distribution is 46, then the missing values of f1 and f2 are: [Question ID = 2278] $$_{1.}$$ $f_1 = 34$, $f_2 = 45$ [Option ID = 9109] $$f_1 = 8$$, $f_2 = 71$ [Option ID = 9111] $$f_1 = 66$$, $f_2 = 13$ [Option ID = 9110] Correct Answer :- $$f_1 = 34$$, $f_2 = 45$ [Option ID = 9109] The equation whose roots are cubes of roots of equation $x^3 - x = 0$ is: [Question ID = 2266] $$x^3 - 9x = 0$$ [Option ID = 9061] $$_{2.} x^{3} + x = 0$$ [Option ID = 9063] 3. $$x^3 - x = 0$$ [Option ID = 9064] $$x^3 + x^2 + x - 1 = 0$$ [Option ID = 9062] Correct Answer :- $$x^3 - x = 0$$ [Option ID = 9064] 32) Let X₁, X₂,...,X_n be a random sample of size n from N(θ₁, 9θ₂), then the estimate of (θ₁, θ₂) using the method of moments is: [Question ID = 2296] $$\left(\frac{1}{9n}\sum_{i=1}^{n}X_{i}, \frac{1}{2n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right)$$ $$\begin{array}{l} \left(\frac{1}{2n}\sum_{i=1}^{n}~X_{i},\frac{1}{9}\sum_{i=1}^{n}~\left(X_{i}-\overline{X}\right)^{2}\right)_{\text{[Option ID = 9182]}} \\ \left(\frac{1}{9}\sum_{i=1}^{n}~X_{i},\frac{1}{2n}\sum_{i=1}^{n}~\left(X_{i}-\overline{X}\right)^{2}\right)_{\text{[Option ID = 9184]}} \\ \left(\frac{1}{n}\sum_{i=1}^{n}~X_{i},\frac{1}{9n}\sum_{i=1}^{n}~\left(X_{i}-\overline{X}\right)^{2}\right)_{\text{[Option ID = 9181]}} \end{array}$$ $$\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}, \frac{1}{9n}\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right)$$ [Option ID = 9] 33) If the observations recorded on five sampled items are 3, 4, 5, 6, 7, then the unbiased estimate of the population variance is: [Question ID = 2276] - 1. O [Option ID = 9101] - 2. 1 [Option ID = 9102] - 3. 2 [Option ID = 9103] - 4. [Option ID = 9104] Correct Answer :- The equation of tangents at origin to the curve $x^2(a^2-x^2)=y^2(a^2+x^2)$ is: [Question ID = 2271] - y = ±ax [Option ID = 9084] - $y = \pm x$ [Option ID = 9083] - $x = \pm ay$ [Option ID = 9081] - y = ±2x [Option ID = 9082] Correct Answer :- $$y = \pm x$$ [Option ID = 9083] 35) An um contains 5 red and 3 black balls. Balls are drawn, one-by-one, with replacement till the 3rd red ball is drawn. The probability that 3rd red ball occurs at the 5th draw is: [Question ID = 2292] - 53 $$\frac{6.5^3}{8^5}$$ [Option ID = 9167] 36) The slope of tangents at double point (x, y) to the curve f (x, y) = 0 is given by solution of the quadratic equation: [Question ID = 2272] $$\frac{\partial^2 f}{\partial x^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial^2 f}{\partial x \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial y^2} = 0$$ 1. $$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial^2 f}{\partial x \partial y} \left(\frac{dy}{dx} \right) + 2 \frac{\partial^2 f}{\partial x^2} = 0$$ [Option ID = 9088] $$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial^2 f}{\partial x \, \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial x^2} = 0$$ $$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + 2 \frac{\partial^2 f}{\partial x \, \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial x^2} = 0$$ $$\frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + 2 \frac{\partial^2 f}{\partial x \, \partial y} \left(\frac{dy}{dx} \right) + \frac{\partial^2 f}{\partial x^2} = 0$$ Let $X_1, X_2,..., X_n$ be a random sample of size n from $N(\theta, \sigma^2)$, σ^2 is known, then pivotal statistics used to find $100(1-\alpha)$ % confidence interval for θ is: [Question ID = 2297] $$2(\overline{X} - \theta)$$ [Option ID = 9185] $$X_{(n)} - \theta$$ $$X_{(1)} - \theta$$ $$\sqrt{n}(\bar{X}-\theta)$$ Correct Answer :- $$\sqrt{n}(\bar{X}-\theta)$$ The variance of unbiased estimator T of θ satisfy: $$V_{\theta}(T) \ge \frac{1}{n E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)}$$ 1. [Option ID = 9203] $$V_{e}(T) \ge \frac{1}{-nE\left(\frac{\partial^{2} \log L}{\partial \theta^{2}}\right)}$$ $$V_{\theta}(T) \ge \frac{1}{n E\left(\frac{\partial \log L}{\partial \theta}\right)}$$ $$V_{\theta}(T) \ge \frac{1}{-E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)}$$ Correct Answer :- $$V_{\theta}(T) \ge \frac{1}{-E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)}$$ 39) If the correlation coefficient between two variables X and Y is 0.6, then the correlation coefficient between two new variables $$U = \frac{X+6}{6}$$ and $V = \frac{Y-6}{-6}$ is: [Question ID = 2286] - 2. -0.1 [Option ID = 9142] - 3. -0.6 [Option ID = 9144] - 4. 0.1 [Option ID = 9141] Correct Answer :- -0.6 [Option ID = 9144] If $$R = \frac{\sum_{i=1}^{n} (x_i - A)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$, $A \neq \overline{x}$, then R is: [Question ID = 2279] - 1. < 1 [Option ID = 9113] - 2. #1 [Option ID = 9116] - 1 [Option ID = 9115] - 4. > 1 [Option ID = 9114] Correct Answer :- . > 1 [Option ID = 9114] # www.FirstRanker.com 41) If the area (under a normal density curve) to the left of the point x₁ is 0.4 and to the right of the point x_2 is 0.3, then x_1 and x_2 are such that: [Ouestion ID = 2288] - none of these [Option ID = 9152] - 2. X₁ < X₂ [Option ID = 9149] - $x_1 = x_2$ [Option ID = 9151] - $x_1 > x_2$ [Option ID = 9150] Correct Answer :- - . x₁ < x₂ [Option ID = 9149] - The solution of the linear differential equation $2e^{3x} \frac{dy}{dx} = 3e^{2y}$ with y(0) = 0 is: [Question ID = 2268] - $e^{3x} e^{-2y} = 0$ [Option ID = 9070] - $e^{3x} + e^{2y} = 0$ [Option ID = 9072] - $e^{3x} e^{2y} = 0$ [Option ID = 9071] - $_{4} e^{-3x} e^{2y} = 0$ [Option ID = 9069] Correct Answer :- $$e^{3x} - e^{2y} = 0$$ [Option ID = 9071] 43) An urn contains 2 white and 3 red balls. 15 balls are drawn one-by-one with replacement. The standard deviation of the number of white balls drawn is: [Question ID = 2282] - 1. 1 [Option ID = 9125] - 2. √3.6 [Option ID = 9128] - 2 [Option ID = 9126] - 4. 3.6 [Option ID = 9127] Correct Answer :- $$\sqrt{3.6}$$ [Option ID = 9128] Variances of the sample mean under simple random sampling (Vran), under stratified sampling with proportional allocation (Vprop) and sampling with Neyman allocation (Vopt) obey which of the following order: [Question ID = 2304] - $V_{ram}\!\leq\!V_{opt}\!\leq\!\!V_{prop}_{\text{[Option ID = 9216]}}$ - $V_{ran} \le V_{prop} \le V_{opt}$ [Option ID = 9215] - $V_{opt} \le V_{ran} \le V_{prop} [Option ID = 9213]$ - $V_{opt} \le V_{prop} \le V_{ran}$ [Option ID = 9214] - $V_{opt} \le V_{prop} \le V_{ram}$ [Option ID = 9214] - 45) If events A and B are independent, consider the statements: - 1. A and Be are independent - 2. Ac and B are independent - 3. Ac and Bc are independent Then: [Question ID = 2275] - only 2 and 3 are true [Option ID = 9099] - only 1 is true [Option ID = 9097] - all 1, 2, and 3 are true. [Option ID = 9100] - only 1 and 2 are true [Option ID = 9098] Correct Answer :- - all 1, 2, and 3 are true. [Option ID = 9100] [Question ID = 2270] - log a log b - 1 [Option ID = 9080] - log ab [Option ID = 9077] Correct Answer :- - log a log b [Option ID = 9078] - 47) In a trivariate distribution if r₁₂ = r₂₃ = r₃₁ = ρ ≠ 1, then the value of R_{1,23} is [Question ID = 2294] $$\rho / \sqrt{1 + \rho}$$ $$1/\sqrt{1+\rho}$$ $$\frac{1}{1+\rho}$$ $$\sqrt{2} \rho / \sqrt{1+\rho}$$ Correct Answer :- $$\sqrt{2} \rho / \sqrt{1 + \rho}$$ [Option ID = 9173] $$\text{If } \int\limits_0^\infty \, e^{-\left(a^2x^2+\frac{b^2}{x^2}\right)}\! dx = \frac{\sqrt{\pi}}{2a} \,\, e^{-2ab} \,\, \text{, then value of } \int\limits_0^\infty x^{-2} \, e^{-\left(a^2x^2+\frac{b^2}{x^2}\right)}\! dx \text{ is equal to:}$$ [Question ID = 2264] 1. $$\frac{\sqrt{\pi}}{2b} e^{-2ab}$$ [Option ID = 9054] $$\frac{\sqrt{\pi}}{2b} e^{-3ab}$$ [Option ID = 9055] $$\frac{\sqrt{\pi}}{2b} e^{-4ab}$$ [Option ID = 9053] 4. 1 [Option ID = 9056] Correct Answer :- $$\frac{\sqrt{\pi}}{2b} e^{-2ab}$$ [Option ID = 9054] - 1. A census [Option ID = 9223] - 2. A statistic [Option ID = 9224] - 3. A Neilson audit [Option ID = 9222] - 4. A sample [Option ID = 9221] Correct Answer :- - A census [Option ID = 9223] - 50) Which one of the following statement is correct? [Question ID = 2308] Systematic sampling is more precise than SRSWOR if heterogeneity of the whole population is more than the heterogeneity within systematic sample - If $\rho_{wst} > 0$, then systematic sampling is more precise than stratified sampling [Option ID = 9232] Systematic sampling may always yield unbiased estimates if there are periodic - features associated with the sampling interval. - Systematic sampling is not very efficient in the presence of linear trend. [Option ID = 9229] Systematic sampling is not very efficient in the presence of linear trend. [Option 1D = 9229]