

(Following Paper ID and Roll No. to be filled in your
Answer Books)

Paper ID: 140851

Roll No.

com

B. TECH.

Theory Examination (Semester-VIII) 2015-16

OPERATIONS RESEARCH

Time: 3 Hours Max. Marks: 100

Section-A

- 1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(2\times10=20)$
 - (a) Discuss simplex and convex set with respect to LPP.
 - (b) Explain the concept of alternate optima in LPP.
 - (c) What is degeneracy in TP?
 - (d) What is curse of dimensionality?
 - (e) Why we use dominance property?
 - (f) How can we solve problems with risk?
 - (g) What are different techniques of selective inventory control?
 - (h) When we need simulation?

(1) P.T.O.

2405/**493**/110/2750

(c) With help of an example, explain the Hungarian

Demand

w

9

 ∞

10

 ∞

algorithm.

2405/493/110/2750

(2)

 $Max Z = 3x_1 + 2x_2$

 $3\mathbf{x}_1 + 4\mathbf{x}_2 \ge 12$ Subject to, $2x_1 + x_2 \le 2$

	D_1 D_2 D_3 D_4 S	(b) Obtain optimal solution of the transportation problem given below:	×. ×. ≥ 0
3	D₄ Supply	portation prob-	

~	э т			
A contractor has to supply 10,000 bearings per day	Find optimum sequence, total elapsed time as well as idle times for the two machines.	M ₂	M.	Job
ctor has	imum s mes for	3	1	Α
to sup	equence	6	4	В
ply 10.	, total % mac	%	6	С
000 %	elapse hines.	∞	3	D
arings	d time	1	5	E
per ds	as we	5	2	F
2	<u> </u>			

Man Files Bauke.

(in hours) is given below:

The processing time for the jobs on each machine

bearings per day. The holding cost of a bearing in stock in Rs 0.02 per year. Set-up cost of a produc-	he starts production run, he can produce 25,000	to an automobile manufacturer. He finds that when	A contractor has to supply 10,000 bearings per day
--	---	---	--

A car par contains 5 cars. The arrival of cars is Poisson with mean of 10 per hour. The length of

tion is Rs 18. How frequently should the production

run be made?

9

2405/493/110/2750

www.FirstRanker. com

(a) Make dual of the following primal model:

 $Min Z = 4x_1 + 5x_2 - 3x_3$

4

2405/493/110/2750

2405/493/110/2750

com

Draw the network variances. Also find the project by 18 weeks.	G	F	Е	D	С	В
network Also find 18 week	1	4	1	2	2	2
and find the proba	5	6	3	3	4	5
i the crit	15	8	11	10	6	8
Draw the network and find the critical path and variances. Also find the probability of completing the project by 18 weeks.	Е	C,D	В	В	Α	None

F 4 G 1 Draw the network variances. Also find to project by 18 weeks. Section	ı D	С	ţ
network Also find 18 week	2	2	,
work and find the probveeks. Section-C	သ	4	·
15 15 d the crit ability of o	10	6	c
F 4 6 8 C,D G 1 5 15 E Draw the network and find the critical path and variances. Also find the probability of completing the project by 18 weeks. Section-C	B	Α	TAOTE
	-		

	Note: Attempt any two questions from this section. (15×2=30)	
4. (a) Explain the procedure for sequencing 2 jobs on k	Use dynamic programming to obtain assignment of salesmen for sales maximization. (10)	
2 jobs on k	nment of sales- (10)	

No of salesmen East stand North stand Club stand assigned 15 45 30 1 15 45 30 2 30 90 60 3 60 135 90 4 120 180 120 5 150 180 150
East stand North stand Club stand 15 45 30 30 90 60 60 135 90 120 180 120 150 180 150
North stand Club stand 45 30 90 60 135 90 180 120 150 150
Chub stand 30 60 90 120

be made with different assignments:

stadium. The table below, shows estimated sales that can He has 5 sales boys to assign to three areas of the

(5)	procedure
İ	for
	procedure for sequencing 2 jobs on k (5)
	2
	jobs
P.T.O	on 1 (5)
ļ.	9 *

machines.

MMM.FirstRanke.

Firstranker's choice b) Use dual simple with this to ache the LPP model given. FirstRan below: com (10)

Max
$$Z = 3x_1 - x_2$$

Subject to, $X_1 + X_2 \ge 1$

$$2x_1 + 3x_2 \ge 2$$

$$x_1, x_2 \ge 0$$

(a) What do you understand by simulation? Discuss different methods for generation of rando numbers.

(5)

(b) The demand for a certain product has a rectangular distribution between 4000 and 5000. Find the optimal order quantity, if the storage cost is Rs 1 per unit and shortage cost is Rs 7 per unit. (10)

(6)

2405/**493**/110/2750

Man FitstRanker.com