

# Roll Www.FirstRanker.com

www.FirstRanker.Com1

### B.TECH.

# THEORY EXAMINATION (SEM-VIII) 2016-17 EXPERIMENTAL STRESS ANALYSIS

Time: 3 Hours Max. Marks: 100

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

#### SECTION - A

## Explain the following:

 $10 \times 2 = 20$ 

- (a) What do you mean by Principal plane and Principal stresses?
- (b) What is null balancing wheat stone bridge circuit?
- (c) Define stress optic law.
- (d) State the method of calibrating of strain gage.
- (e) What are the requirements in selection of Photo elastic materials?
- (f) How will you obtain dark and light field in a circular polariscope?
- (g) Enumerate the various Non-Destructive Testing (NDT) methods?
- (h) What is a stress gauge?
- (i) In what way three dimensional photo elasticity is different from two-dimensional photo elasticity?
- Briefly explain Isochromatic Fringe Pattern.

### SECTION - B

### 2. Attempt any five parts of the following questions:

 $5 \times 10 = 50$ 

- (a) Derive an expression for change in output voltage of wheat stone bridge circuit in terms of the changes in resistances.
- (b) Explain in detail the working principle and measurement of strains from an Acoustical strain gauge with neat sketch.
- (c) What in energy absorbed by a system, complementary strain energy and elastic strain energy? Explain these with the help of diagram.
- (d) What is significance of strain compatibility equation? Write down these compatibility equations.
- (e) Derive an expression for output voltage of whetstone bridge circuit for strain gauges. Calculate the sensitivity when all the gauges are active. Given R<sub>g</sub> = 120 ohms, I<sub>g</sub> = 50 mA, S<sub>g</sub> = 2.
- (f) What are strain rosettes? What are their uses? For a rectangular rosette on a steel specimen? €<sub>A</sub> = -600 x 10<sup>-6</sup>, €<sub>B</sub> = 300 x 10<sup>-6</sup>, €<sub>C</sub> = 400 x 10<sup>-6</sup>. Determine the principal strains, principal stresses and directions E<sub>steel</sub> = 210 Gpa.
- (g) Derive expressions for: (i) minimum and maximum stresses and strains, (ii) angle of principal stress, (iii) shear stress in each case

#### SECTION - C

### Attempt any two parts of the following questions:

 $2 \times 15 = 30$ 

- Why do we require separation? Explain any two-separation techniques in detail.
  - (ii) Explain in detail how stress-freezing technique is employed in threedimensional Photoelasticity?
- 4 Explain the following:
  - Ultrasonic testing in NDT and their applications.
  - (ii) Radiography
- 5 (i) Explain with necessary equations how isoclinics are eliminated in circular polariscope setup. What are the properties of isochromatics?
  - Explain any two compensation techniques used in Photoelasticity.

