B. TECH.

THEORY EXAMINATION (SEM-VIII) 2016-17 APPLIED LINEAR ALGEBRA

Time: 3 Hours Max. Marks: 100

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

Attempt all parts of the following questions:

 $10 \times 2 = 20$

- a) Find dimension of vector space C(R).
- b) Define Basis of a vector space.
- c) State rank-nullity theorem.
- d) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $T\begin{bmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ What is the value of $T\begin{bmatrix} 1 \\ 1 \end{pmatrix}$.
- Find all non-singular linear transformation T: R⁴ → R³.
- f) Find the condition that T is non-singular.
- g) Define complete ortho normal set.
- h) Give polarization identity.
- A real quadratic form in three variables is equivalent to the diagonal form 6y₁² + 3y₂² + 0y₃² then find the quadratic form.
- Define linear functionals with examples

SECTION - B

Attempt any five parts of the following questions:

 $5 \times 10 = 50$

- a) Define field with example.
- Prove that the set $V = \begin{bmatrix} a & a+b \\ a+b & b \end{bmatrix}$: $a,b \in R$ is vector space over R.
- Find the Eigen values and Eigen vectors of the matrix

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$

- d) The matrix of quadratic form q on R^3 given by $q(x_1, x_2, x_3) = x_1^2 x_3^2 + 3x_1x_2 6x_2x_3$
- e) State and prove Minkowski inequality.
- f) Let T be the linear transformation on V such that $T^3 T^2 T + I = 0$, then find T^{-1} .
- g) Let V be a finite dimensional inner product space and S,S₁,S₂ are subset of V Prove that (i) S[⊥] = {S}^T (ii) {S} = S^{⊥⊥}
- h) Prove that union of two subspaces is subspace if one is contained in other.

www.FirstRanker.com

www.FirstRanker.com

SECTION - C

Attempt any two parts of the following questions:

 $2 \times 15 = 30$

- (i) Prove that the system of three vectors (1,3,2),(1,-7,-8), (2,1,-1) of V₃(R) is linearly dependent.
 - (ii) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by $T(x_1, x_2) = (x_1 + x_2, x_1 x_2, x_2)$, then find the rank of T.
- **4.** (i) $W = Span\{x_1, x_2\}$, where $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct orthogonal basis (v_1, v_2) for w
 - (ii) Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, $v \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are u and v Eigen vectors of A.
- 5. (i) Define a linear transformation $T: R^2 \to R^2$ by $T(x) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$. Find the images under T of $u = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, v \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $u + v = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$
 - (ii) Find a vector x = (c,d) that has dot product x.r = 1 and x.s = 0 with the given vectors r = (-2,1), s = (-1,2)

