B. TECH.

THEORY EXAMINATION (SEM-VIII) 2016-17

APPLIED LINEAR ALGEBRA

Time : 3 Hours
Max. Marks: 100
Note : Be precise in your answer. In case of numerical problem assume data wherever not provided.
SECTION - A

1. Attempt all parts of the following questions:
$10 \times 2=20$
a) Find dimension of vector space $C(R)$.
b) Define Basis of a vector space.
c) State rank-nullity theorem.
d) Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation such that $T\left[\binom{1}{0}\right]=\binom{1}{2}$ and $T\left[\binom{0}{1}\right]=\binom{2}{1}$ What is the value of $T\left[\binom{1}{1}\right]$.
e) Find all non-singular linear transformation $T: R^{4} \rightarrow R^{3}$.
f) Find the condition that T is non-singular.
g) Define complete ortho normal set.
h) Give polarization identity.
i) A real quadratic form in three variables is equivalent to the diagonal form $6 y_{1}{ }^{2}+3 y_{2}{ }^{2}+0 y_{3}{ }^{2}$ then find the quadratic form.
j) Define linear functionals with examples

SECTION - B

2. Attempt any five parts of the following questions:
a) Define field with example.
b) Prove that the set $V=\left\{\left[\begin{array}{cc}a & a+b \\ a+b & b\end{array}\right]: a, b \in R\right\}$ is vector space over R.
c) Find the Eigen values and Eigen vectors of the matrix

$$
A=\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 2 & 6 \\
0 & 0 & 5
\end{array}\right]
$$

d) The matrix of quadratic form q on R^{3} given by $q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-x_{3}^{2}+3 x_{1} x_{2}-6 x_{2} x_{3}$
e) State and prove Minkowski inequality.
f) Let T be the linear transformation on V such that $T^{3}-T^{2}-T+I=0$, then find T^{-1}.
g) Let V be a finite dimensional inner product space and S, S_{1}, S_{2} are subset of V Prove that (i) $S^{\perp}=\{S\}^{T}$ (ii) $\{S\}=S^{\perp \perp}$
h) Prove that union of two subspaces is subspace if one is contained in other.

SECTION - C

Attempt any two parts of the following questions:
3. (i) Prove that the system of three vectors $(1,3,2),(1,-7,-8),(2,1,-1)$ of $V_{3}(R)$ is linearly dependent.
(ii) Let $T: R^{2} \rightarrow R^{3}$ be a linear transformation given by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}, x_{2}\right)$, then find the rank of T.
4. (i) $W=\operatorname{Span}\left\{x_{1}, x_{2}\right\}$, where $x_{1}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. Construct orthogonal basis $\left(v_{1}, v_{2}\right)$ for W
(ii) Let $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right], u=\left[\begin{array}{c}6 \\ -5\end{array}\right], v\left[\begin{array}{c}3 \\ -2\end{array}\right]$. Are u and v Eigen vectors of A.
5. (i) Define a linear transformation $T: R^{2} \rightarrow R^{2}$ by $T(x)=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-x_{2} \\ x_{1}\end{array}\right]$. Find the images under T of $u=\left[\begin{array}{l}4 \\ 1\end{array}\right], v\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $u+v=\left[\begin{array}{l}6 \\ 4\end{array}\right]$
(ii) Find a vector $x=(c, d)$ that has dot product $x . r=1$ and $x . s=0$ with the given vectors $r=(-2,1), s=(-1,2)$

