

Roll Www.FirstRanker.com www.FirstRanker.com

B. TECH.

THEORY EXAMINATION (SEM–VIII) 2016-17

DISTRIBUTED SYSTEM

Time : 3 Hours

Note : Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION-A

- 1. Explain the following :
 - a) List out the short comings of Lamport's logical clock.
 - b) Why there is no Global clock in Distributed System? Give reason
 - c) Give the limitations of Distributed System.
 - d) What do you mean by Termination Detection?
 - e) Name Distributed Deadlock Detection Algorithms.
 - f) Differentiate between Process and Threats?
 - g) Explain the term Phantom Deadlock.
 - **h**) What is Digital Signature?
 - i) Differentiate between Fault & Failure?
 - j) Which layer provides a security handshake to initiate the TCP/IP connection?

SECTION-B

- 2. Attempt any **five** of the following :
 - a) What is Lamport's Logical Clock? For Lamoport clock system prove that for any two events 'a' & 'b' if a-> b, then C(a)<C(b), but vice versa is not true.
 - **b**) Explain Bully Algorithm.
 - c) Define Distributed System with example.
 - d) Write short note on
 - i. Atomic Commit in Distributed DBMS
 - ii. Communication Deadlock
 - e) Show that Byzantine Agreement cannot always be reached among four processors if two processor are faulty.
 - f) Explain Ricart-Agrawala Algorithm for Mutual Exclusion.
 - g) Describe Memory Coherence.
 - h) Fault Tolerance can be achieved by Error Processing? Explain.

SECTION-C

Attempt any two of the following :

- 3. What are the design issues of Distributed System? Also discuss challenges in Distributed System.
- 4. Discuss the following
 - a. "An approach to Concurrency Control based on Time Stamping is inherently superior to an approach based on Locking". Give argument either in favor of or against the statement.
 - b. Explain why Time Stamping cannot lead to Deadlock and Locking can.
- 5. Discuss the following
 - a. ARP
 - b. RARP
 - c. Deadlock Free Packet Switching

www.FirstRanker.com

(15×2=30)

(10×5=50)

Max. Marks . 100

Max. Marks : 100

 $(10 \times 2 = 20)$