DEPARTMENT OF MATHEMATICS

QUESTION BANK

I SEMESTER
1918108 - STATISTICS FOR MANAGEMENT

Regulation - 2019
Academic Year 2019-2020

Prepared by
Ms. B. Vasuki, Assistant Professor/Mathematics
Ms.B.Elakkiavani, Assistant Professor/Mathematics

DEPARTMENT OF MATHEMATICS

QUESTION BANK

SUBJECT
SEM / YEAR
: 1918108 - STATISTICS FOR MANAGEMENT
: I Semester / I Year

UNIT I - INTRODUCTION

SYLLABUS: Basic definitions and rules for probability, conditional probability independence of events, Baye's theorem, and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

PART- A			
S.NO	QUESTIONS	BT Level	COMPETENCE
PART - A			
1.	Define Statistics.	BTL -6	Creating
2.	What is the addition and multiplication theorem on probability.	BTL -1	Remembering
3.	Distinguish between a priori and posterior probability?	BTL -6	Creating
4.	The price of the selected stock over a five day period shown as 170,110 , 130, 170 and 160. Compute mean , median and mode.	BTL -6	Creating
5.	A car travels 25 miles at $25 \mathrm{mph}, 25$ miles at 50 mph and 25 miles at 75 mph . Find the harmonic of three velocifies?	BTL -4	Analyse
6.	A ball is drawn at random from a box containg 6 red balls, 4 white balls and 5 blue balls. Find the probability that the ball drawn is not red.	BTL -4	Analyse
7.	Find the median and mode for the weights (kgs) of 15 persons given as $68,85,70,65,71,67,65,55,80,62,65,64,70,60,56$.	BTL -3	Applying
8.	Name few measures of dispersion.	BTL -1	Remembering
9.	write the common measures of central tendency?	BTL -1	Remembering
10.	Define continuous and discrete variables examples.	BTL -1	Remembering
11.	Let X be the lifetime in years of a mechanical part. Assume that X has the $\operatorname{cdf} \mathrm{F}(\mathrm{x})=1-\mathrm{e}^{-\mathrm{x}}, \mathrm{x} \geq 0$. Find $\mathrm{P}[1<\mathrm{X} \leq 3]$.	BTL -1	Remembering
12.	Define independent events.	BTL -1	Remembering
13.	State the theorem of total probability	BTL -1	Remembering
14.	What is the use of Baye's theorem?	BTL -6	Creating
15.	Mention the properties of a discrete probability distribution.	BTL -1	Remembering
16.	Define a Poisson distribution and mention its mean and variance.	BTL -1	Remembering
	If the mean and variance of a binomial distribution are respectively 6	BTL -3	Applying
	www.FirstRanker.com		

	getting the sum of the two numbers (i) equal to 5 , (ii) multiple of 3 , (iii) divisible by 4 .		
5(b).	Given $\lambda=4.2$, for a poisson distribution. Find (a) $\mathrm{P}(\mathrm{X} \leq 2)$ (b) $P(X \geq 5)$ (c) $P(X=8)$.	BTL -6	Creating
6(a).	An urn contains 5 balls. Two balls are drawn and found to be white. What is the probability that all the balls are white?	BTL-1	Remembering
6(b).	The contents of urns I, II, III are as follows: 1 white, 2 black and 3 red balls; 2 white, 1 black and 1 red balls; 4 white, 5 black and 3 red balls; One urn is chosen at random and two balls drawn. They happen to be white and red. What is the probability that they come from urns I, II, III?	BTL -3	Applying
7(a).	In 1989, there were three candidates for the position of principal Mr. Chatterji, Mr. Ayangar and Dr. Singh. Whose chances of getting the appointment are in the proportion 4:2:3 respectively. The probability that Mr. Chatterji is selected, would introduce coeducation in the is 0.3 . The probabilities of Mr. Ayangar and Dr. Singh doing the same are respectively 0.5 and .08 . What is the probability that there was co-education in the in 1990?	BTL -3	Applying
7(b).	Find the probability that atmost 5 defective bolts will be found in a box of 200 bolts, if it is known that 2% of such bolts are expected to be defective. $\left(\mathrm{e}^{-4}=0.0183\right)$	BTL -6	Creating
8(a).	A coin is tossed 6 times what is the probability of obtaining (a) 4 heads (b) 5 heads (c) 6 heads (d) getting 4 or more heads.	BTL -3	Applying
8(b).	In a bolt factory machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$ manufacture respectively 25%, 35% and 40% of the total of their output 5, 4,2 percent are defective bolts. If A bolt is drawn at random from the product and is found to be defective, what are the probabilities that is was manufactured by machines A, B and C ?	BTL -6	Creating
9(a).	In a test of 2000 electric blubs it was found that the life of a particular make was normally distributed with an average life of 2040 hours and S. D. of 60 hours. Estimate the number of blubs likely to burn for (1) More than 2150 hours (2) Less than 1950 hours (3) More than 1920 hours but less than 2160 hours.	BTL -3	Applying
9(b).	The latest nationwide political poll indicates that for Americans who are randomly selected, the probability that they are conservative is 0.55 , the probability that they are liberal is 0.30 and the probability that they are middle of the road is 0.15 . Assuming these probabilities are accurate, answer the following	BTL -4	Analyzing

	questions from a randomly chosen group of 10 Americans (a) What the probability that 4 are liberal? (b) What the probability that none are conservative (c) What the probability that two are middle of the road (d) What the probability that a least 8 are liberal											
10.	If X follows a normal distribution with mean 12 and variance 16 cm , find the probabilities for (i) $\mathrm{X} \leq 20$ (ii) $\mathrm{X} \geq 20$, and (iii) $0 \leq \mathrm{X}$ ≤ 12.										BTL -3	Applying
11.	A discerete random variable X has the probability function given below: $\begin{array}{llcccccccc} \text { Value of } \mathrm{X}=\mathrm{x}: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathrm{P}(\mathrm{X}=\mathrm{x}) & : & 0 & \mathrm{k} & 2 \mathrm{k} & 2 \mathrm{k} & 3 \mathrm{k} & \mathrm{k}^{2} & 2 \mathrm{k}^{2} 7 \mathrm{k}^{2}+\mathrm{k} \end{array}$ Find (1) The value of k (2) $\mathrm{P}(1.5<\mathrm{X}<4.5 / \mathrm{X}>2)$ (3) $\mathrm{P}(\mathrm{X}<6), \mathrm{P}(\mathrm{X} \geq 5), \mathrm{P}(0<\mathrm{X}<4)$ (4) The distribution of X.										BTL -3	Applying
12.	X is a normal variable with mean 30 and standard deviation of 5 . Find (i) $\mathrm{P}[26 \leq \mathrm{X} \leq 40]$ (ii) $\mathrm{P}[\mathrm{X} \geq 45]$ (iii) $\mathrm{P}[\|\mathrm{X}-30\|>5]$ use normal distribution tables										BTL -4	Analyzing
13.	In an intelligence test administered on 1000 students, the average was 42 and standard deviation 24 , find (i) the number of students exceeding a score 50 . (ii) the number of students lying between 30 and 54(iii) the value of score exceeded by top 100 students.										BTL -4	Analyzing
14(a).	The probability that an entering student will graduate is 0.4 Determine the probability that out of 5 students atleast one will graduate.										BTL-5	Evaluating
14(b).	Fit a Poisson Distribution to the following data which gives the number of doddens in a sample of clover seeds										BTL -4	Analyzing
	No	0		2		4	5	6	7	8		
		56	156		92	37	22	4	0	1		
	PART-C											
1(a).	A disciplinary committee is formed from the staff of XYZ Company which has three departments Marketing, Finance and Production of the $10,5,20$ members respectively. All departments have two female staff each. A department is selected at random and from which two matters are selected for the committee, What is the probability that both the team members are female?										BTL-6	Creating

1(b).	In a bolt factory machines A, B, C manufacture respectively 25 , 35 and 40 percent of the total. Of their output 5, 4 and 2 percent are defective bolts respectively. A bolt is drawn at random from the product and is found o be defective. What are the probabilities that it was manufactured by machines A, B or C ?	BTL-2	Understanding
2(a).	State Bayes theorem and brief about its applications.	BTL-2	Understanding
2(b).	Out of 800 families with 4 children each, how many families would be expected to have (i) 2 boys and 2 girls (ii) at least 1 boy (iii) at most 2 girls (iv) children of both sexes? Assume equal probabilities for boys and girls.	BTL-1	Remembering
3.	Describe the classifications of probability?	BTL-1	Remembering
4.	What are the applications of Normal distribution in statistics?	BTL-6	Creating
UNIT -II- SAMPLING DISTRIBUTION \& ESTIMATION.			
SYLLABUS: Introduction to sampling distributions, sampling distribution of mean and proportion, application of central limit theorem, sampling techniques. Estimation: Point and Interval estimates for population parameters of large sample and small samples, determining the sample size.			
PART - A			
$\begin{gathered} \mathbf{S . N} \\ \mathbf{O} \end{gathered}$	QUESTIONS	BT Level	COMPETENCE
1. D	Define Sampling distribution of proportion.	BTL -1	Remembering
2. D	Define Probable standard error.	BTL -1	Remembering
$3 . D$	Define standard error and mention its importance	BTL -1	Remembering
4. D	Define central limit theorem	BTL -1	Remembering
5.	What is the role of central limit theorem in estimation and testing problems	BTL -6	Creating
6. D	Define stratified sampling technique	BTL -1	Remembering
$7 . \quad$ B	Briefly describe the significance level	BTL -1	Remembering
8. D	Distinguish between parameter and statistic.	BTL -2	Understanding
9. D	Define estimator, estimate and estimation.	BTL -1	Remembering
10. D	Distinguish between point estimation and interval estimation	BTL -2	Understanding
11. M	Mention the properties of a good estimator.	BTL -1	Remembering
12. D	Define confidence coefficient.	BTL -1	Remembering
13.	What is the level of significance in testing of hypothesis	BTL -6	Creating
14. D	Define confidence limits for a parameter	BTL -1	Remembering
15.	State the conditions under which a binomial distribution becomes a normal distribution	BTL -4	Analyzing
16.	If the random sample comes from a normal population, what can be said about the sampling distribution of the mean.	BTL -5	Evaluating
17.	An automobile repair shop has taken a random sample of 40 services that the average service time on an automobile is 130 minutes with a standard deviation of 26 minutes. Compute the standard error of the mean.	BTL -6	Creating

18.	What is a random number? How it is useful in sampling?	BTL -6	Creating
19.	A population has the numbers: $12,8,10,30,12,16,40,5,16,24$, $22,31,30,16,15$. Draw a systematic sample of size 5 . Find out its mean.	BTL -3	Applying
20.	How large sample is useful in estimation and testing	BTL -4	Analyzing
PART -B			
1(a).	A random sample of 700 units from a large consignment showed that 200 were damaged. Find (i) 95\% (ii) 99% confidence limits for the proportion of damaged units in the consignment.	BTL -3	Applying
1(b).	A random sample of size 9 is obtained from a Normal population with mean 25 and if the variance 100 find the probability that the sample mean exceeds 31.2.	BTL -4	Analyzing
2(a).	In a normally distributed population, average income per household is Rs. 20,000 with a standard deviation of Rs. 1,600. Find the probability that the sample mean will be between Rs. 19,600 and Rs.20,200 in a survey of a random sample of 100 households.	BTL -6	Creating
2(b).	A university wants to determine the percentage of students who would accept proposed fees hike for improving facilities. The university wants to be 90% confident that the percentage is within 2% of the true value. Find the sample size to achieve the accuracy regardless of the true percentage assuming the percentage of students accepting the increase in tuition fees to be 0.5 .	BTL -6	Creating
3(a).	A bank has kept records of the checking balances of its customers and determined that the average daily balances of its customers is Rs. 300 with a standard deviation of Rs. 48. A random sample of 144 checking accounts is selected. (i) What is the probability that the sample mean will be more than Rs. 306.60? (ii) What is the probability that the sample mean will be less than Rs. 308 ?	BTL -6	Creating
3(b).	From the question 3(a) (i) What is probability that the sample mean will between Rs. 302 and Rs. 308? (ii) What is probability that the sample mean will be atleast Rs. 296?	BTL -6	Creating
4(a).	Explain Stratified sampling technique and discuss how it is better than simple random sampling in a particular situation.	BTL -4	Analyzing
4(b).	Discuss the standard error of proportion	BTL-2	Understanding
5.	Explain the methods of drawing simple random sample from a finite population.	BTL -4	Analyzing

In a sample of 1000 citizens of India, 540 are wheat eaters and the 6(a). rest are rice eaters. Can we assume that both rice and wheat equally popular in India at 1% level of significance?	BTL-5	Evaluating
A simple random sample of 144 items resulted in a sample mean 6(b). of 1257.85 and standard deviation of 480 . Develop a 95% confidence interval for the population mean	BTL -6	Creating
A car dealer wants to estimate the proportion of customers who still own the cars they purchased 5 years earlier. A random sample of 500 customers selected from the dealer's records indicate that 7(a). 315 customers still own cars that they were purchased 5 years earlier. Set up 95% confidence interval estimation of the population proportion of all the customers who still own the cars 5 years after they were purchased.	BTL-2	Understanding
A movie maker sampled 55 fans who viewed his master piece movie and asked them whether they had planned to see it again. 7(b). Only 10 of them believed that the movie was worthy of a second look. Find the standard error of the population of fans who will view the film a second time. Construct a 90% confidence interval for this population.	BTL -5	Evaluating
From a population of size 600 , a sample of 60 individuals revealed 8(a). $\begin{aligned} & \text { mean and standard deviation as } 6.2 \text { and } 1.45 \text { respectively. (i) Find } \\ & \text { the estimated standard error (ii) } \\ & \text { Construct } 96 \% \text { confidence }\end{aligned}$ interval for the mean.	BTL -3	Applying
The age of employees in a company follows normal distribution with its mean and variance as 40 years and 121 years respectively. If a random sample of 36 employees is taken from a finite normal $\mathbf{8}(\mathbf{b})$. population of size 1000 , what is the probability that the sample mean is (i) less than 45 (ii) greater than 42 and (iii) between 40 and 42 ?	BTL -6	Creating
A firm wishes to estimate with an error of not more than 0.03 and a level of confidence of 98%, the proportion of consumers that $\mathbf{9}(\mathbf{a})$. prefer its brand of household detergent. Sales report indicate the about 0.20 of all consumers prefer the firm's brand. What is the requisite sample size?	BTL -5	Evaluating
A random sample of 700 units from a large consignment should9(b).that 200 were damaged. Fi) 95% (ii) 99% confidence limits for the proportion of damaged units in the consignment	BTL -3	Applying
10(a). Srom a population of 500 items with a mean of 100 gms and the standard error? (ii) Find $\mathrm{P}(99.5<\bar{X}<101.5)$.	BTL -6	Creating
10(b). A non-normal distribution representing the number of trips	BTL -6	Creating

| | In a random sample of 75 axle shafts. 12 have a surface finish that
 is rougher than the specifications will allow. Suppose that a
 modification is made in the surface finishing process and
 subsequently a second random sample of 85 axle shafts is
 obtained. The number of defective shafts in this second sample is
 10. Obtain an approximate 95\% confidence interval on the
 difference in the proportions of defectives produced under the two
 processes | BTL -5 |
| :--- | :--- | :--- | :--- |\quad Evaluating

UNIT III - TESTS OF HYPOTHESIS- PARAMETRIC TESTS

SYLLABUS: Hypothesis testing: one sample and two sample tests for means and proportions of large samples (z-test), one sample and two sample tests for means of small samples (t-test), F-test for two sample standard deviations. ANOVA one and two way.

PART-A			
Q. No.	Question	Bloom's Taxonomy Level	Domain
1.	Define Test of Significance.	BTL-1	Remembering
2.	What are the Type I and Type II errors?	BTL-6	Creating
3.	What do you mean by one tail test?	BTL-6	Creating
4.	State the applications of Z-test and t-test.	BTL-4	Analyzing
5.	Define critical region	BTL-1	Remembering
6.	Distinguish between one tail and two tail tests	BTL-2	Understanding
7.	What is the aim of design of experiments?	BTL-6	Creating
8.	Distinguish between one-way and two-way analysis of variance.	BTL-2	Understanding
9.	When does the Z-test apply?	BTL-1	Remembering
10.	Explain SSB , SSW and SSY and relationship in ANOVA.	BTL-4	Analyzing

11.	Describe any two applications of t-distribution						BTL-1	Remembering
12.	Write the uses of F-test?						BTL-6	Creating
13.	Define the level of significance.						BTL-1	Remembering
14.	Write the properties of t-distribution?						BTL-6	Creating
15.	What is the role of standard error?						BTL-6	Creating
16.	Mention any four applications of t-distribution in tests of hypothesis.						BTL-1	Remembering
17.	Mention any four uses of Chi-square distribution in test of hypothesis.						BTL-1	Remembering
18.	Define null hypothesis? Explain.						BTL-6	Creating
19.	Estimate the standard error of difference between two proportion if $p_{1}=0.10, p_{2}=0.133$ and $n_{1}=50, n_{2}=75$.						BTL-6	Creating
20.	Mention any two assumptions made in analysis of variance techniques.						BTL-1	Remembering
PART-B								
1(a).	A study compares the effect of four 1-month point-of-purchase promotions on sales. The unit sales for five stores using all four promotions in different months follow.						BTL-5	
	Free Sample	78	87	81	89	58		
	One-pack gift	94	91	87	90	88		
	Cents off	73	73	78	69	83		Evaluating
	76Refund by mail	79	83	78	69	81		
	(i)Compute the mean unit sales for each promotion and then determine the grand mean. (ii)Estimate the population variance using the between column variance.							
1(b).	From the question 1(a) (i)Estimate the population variance using the within-column variance computed from the variance within the samples. (ii)Calculate the F ratio. At the 0.01 level of significance, do the promotions produce different effects on sales.						BTL-2	Understanding
2(a).	In a low cost Toy production system, the molding machine has been set with standard of 1% defective. The 80 sample units produced from this machine shows defective of one unit. Is it necessary to stop the product for corrective mechanism? Test at 5\% level of significance						BTL-5	Evaluating
2(b).	Block Enterprises, a manufacturer of chips for computers. Is in the process of deciding whether to replace its current semi automated assembly line with a fully automated assembly line. Block has gathered some preliminary test data about hourly chip production, which is summarized in the following table, and it would like to know whether it should upgrade its assembly line. State (and test at a $=0.02$) appropriate hypothesis to help Block decide.						BTL-5	Evaluating
3(a).	Sample I : 10 12 18 15 16 Sample II : 7 15 10 12 8 Sample III : 12 8 15 16 15						BTL-5	Evaluating
3(b).	The I.Q.s of 16 students from one class of an showed a						BTL-2	Understanding

	(i)Write the application testing of hypothesis in statistics. (ii)What is t-test? When should we apply a t -test?									BTL -3	Applying
UNIT IV: NON-PARAMETRIC TESTS											
SYLLABUS: Chi-square test for single sample standard deviation. Chi-square tests for independence ofattributes and goodness of fit. Sign test for paired data. Rank sum test. Kolmogorov-Smirnov - test for goodness of fit, comparing two populations. Mann - Whitney U test and Kruskal Wallis test. One sample run test.											
PART-A											
$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Question									$\begin{array}{\|c} \hline \text { Bloom's } \\ \text { Taxonomy } \\ \text { Level } \\ \hline \end{array}$	Domain
1.	Define Rank Correlation test.									BTL-1	Remembering
2.	Write the formula in chi square test and any two uses.									BTL-1	Remembering
3.	Define Rank-Sum test.									BTL-1	Remembering
4.	Mention the advantages of Nonparametric Tests.									BTL-1	Remembering
5.	What is the other name or non-parametric test? Why?									BTL-6	Creating
6.	When are non parametric tests used?									BTL-1	Remembering
7.	What is the null hypothesis framed in Mann-Whitney test?									BTL-6	Creating
8.	Write down the working rule for Mann-Whitney U-test and KruskalWallis test.									BTL-1	Remembering
9.	Explain sign test.									BTL-4	Analyzing
10.	Define one sample run test?									BTL-1	Remembering
11.	When is Krushkal-Wallis test used?									BTL-1	Remembering
12.	Distinguish between Mann-Whitney U-test and Krushkal-Wallis test.									BTL-2	Understanding
13.	Write the contingency $2 * 2$ table for \aleph^{2} test.									BTL-5	Evaluating
14.	Write down the formula to calculate rank correlation coefficient (including tie values).									BTL-1	Remembering
15.	Two HR managers (A and B) ranked five candidates for a new position. Their rankings of the candidates are show below:									BTL-6	Creating
16.	Define rank correlation co-efficient.									BTL-1	Remembering
17.	The following are the ranks obtained by 10 students in Statistics and Mathematics. Find out the rank correlation coefficient.									BTL-4	Analyzing
	Statistics	1	2		4	,	5	6	7		
	Mathematics	2	5	1	6	6	7	4	3		
18. Explain Kolmogorov-Smirnov Test for one sample problem. 19. What adjustment is to be done for tie values to find rank correlation. 20. Mention the properties of linear coefficient of correlation.										BTL-4	Analyzing
										BTL-6	Creating
										BTL-1	Remembering
PART -B											
1(a).	The scores of a written examination of 24 students, who were trained by using three different methods, are given below.									BTL-3	Applying
	Video cassette A	74	88	82	93	55	70	65			

against corrosion yielded the following maximum depths of pits (in thousandths of an inch) in pieces of wire subjected to the respective treatments:

Method A:	77	54	67	74	71	66	
Method B:	60	41	59	65	62	64	52
Method C:	49	52	69	47	56		

Use the Kruskal-Wallis test at the 5% level of significance to test the null hypothesis that the three samples come from identical populations.
The number of defects in printed circuit boards in hypothesized to follow a poisson distribution. A random sample of 60 printed boards have been collected and the number of defects observed. The following table gives the results.
Table:
14.

No. of defects	Observed Frequency
0	32
1	15
2	9
3	4

Does the assumption of a poisson distribution seem appropriate as a probability model for this process?

PART C

1. Explain the Mann-Whitney test procedure with appropriate examples
2.

Write the application of Non parametric test and Sign test in statictics.
The sales records of two branches of a department store over the last 12 months are shown below.(sales figures are in thousands of dollars). We want to use the Mann-Whitney-Wilcoxon test to determine if there is a significant difference in the sales of the two branches.

3(a).

Month	Branch A	Branch B
1	257	210
2	280	230
3	200	250
4	250	260
5	284	275
6	295	300
7	297	320
8	265	290
9	330	310
10	350	325
11	340	329
12	372	335

(i) Compute the sum of the ranks for branch A
(ii) Compute the mean $\mu \mathrm{T}$.

3(b).
From the question 3(a)
(i)Compute σT.
(ii)Use $\alpha=0.05$ and test to determine if there is a significant difference in the population of the sales of the two branches Independent random samples of ten day students and ten evening students at a university showed the following age distributions. We want to use the Mann-Whitney-Wilcoxon test to determine if there is a significant different in the age distribution of the two groups.

Day	Evening
26	32
18	24
25	23
27	30
19	40
30	41
34	42
21	39
33	45
31	35

(i) Compute the sum of the ranks for the day students.
(ii) Compute the mean $\mu \mathrm{T}$.

From the question 4(a)
4(b).
(i)Compute $\sigma \mathrm{T}$.
(ii)Use $\alpha=0.05$ and test for any significant difference in the age

BTL -4 Analyzing distribution of the two populations

UNIT - V CORRELATION AND REGRESSION

SYLLABUS: Correlation - Coefficient of Determination - Rank Correlation - Regression - Estimation of Regression line - Method of Least Squares - Stándard Error of estimate.

QART-A			Bloom's Taxonomy Level
Question		Domain	
1.	Define regression coefficient?.	BTL -1	Remembering
2.	Define Linear Relationship of Correlation.	BTL -6	Creating
3.	Write the Properties of Correlation Coefficient?	BTL -1	Remembering
4.	What is the angle between the regression lines?	BTL -1	Remembering
5.	When is linear regression used?	BTL -1	Remembering
6.	Distinguish between correlation and regression	BTL -2	Understanding
7.	What is regression analysis?	BTL -6	Creating
8.	What do you interpret if the $\mathrm{r}=0$, $\mathrm{r}=+1$ and $\mathrm{r}=-1$?	BTL -1	Remembering
9.	Specify the range of correlation.	BTL -6	Creating
10.	Briefly explain how a scatter diagram benefits the researcher?	BTL -4	Analyzing
11.	Define correlation coefficient between two variables.	BTL -1	Remembering
12.	What is a scatter diagram and write its benefits?	BTL -6	Creating

	Promotional expenses in Lakhs			7	10	9	4	11	5	3		
	Sales in units			12	14	13	5	15	7	4		
4(a).	Data on rainfall and crop production for the past seven years are as follows:											
	Rainfall in inches	20	22	24	26	28	30	32				
	Crop production	30	35	40	50	60	60	55			3	Applying
	Find the correlation coefficient and comment on the relationship.											
4(b).	The percentage of students getting dream placements in campus selection in a leading technical during the past five years are as follows:											
	Year 2008		2009			2011					BTL -4	Analyzing
	Percentage Find the linear equ	7.3	8.7			7.6						Analyzing
	Find the linear equation that describes the data. Also calculate the percentage of trend											
5(a).	Let X_{1} and X_{2} be two independent variables with mean 5 and 10 and S.D 2 and 3 respectively. Obtain $r_{U V}$ where $U=3 X_{1}+4 X_{2}$ and $V=3 X_{1}-X_{2}$										BTL -1	Remembering
5(b).												
	local computer shop and their prices. Develop a least squares regression line and explain what the slope of the line indicates. Compute the coefficient of determination and comment on the strength of relationship between x and y . Compute the sample correlation coefficient between the prices and the number of flash drives sold. Use $\alpha=0.01$ to test the relationshíp between x and Y .											
											BTL -6	Creating
6(a).	What are the assumptions made by the regression model in estimating the parameters and in significance testing?										BTL -6	Creating
6(b).	The equations of two variables X and Y as follows $3 \mathrm{X}+2 \mathrm{Y}-26=0,6 \mathrm{X}+\mathrm{Y}$ $31=0$ Find the means, regression coefficient \& coefficient of correlation.										BTL -4	Analyzing
7.	Promotional expenses and sales data for an equipment manufacturer are as follows. Calculate the correlation coefficient and comment											
	Promotional expenses in Lakhs							11	5	3		
	Sales in Units					4 13	5	15	7	4		
8(a).	A gas company has supplied $18,20,21,25$ and 26 billion cubic feet f gas, respectively, for the years 2004 to 2008. Find the estimating equation that best describes these data. Calculate the percentage of trend.										BTL -3	Applying
8(b).	From the question 8(a) (i)Calculate the relative cyclical residuals (ii)Find the year in which the fluctuation is maximum										BTL-5	Evaluating
9.	Given that $\sum \mathrm{x}=130, \quad \sum \mathrm{x}^{2}=2288$,			$\sum \mathrm{Y}$	220,	$\sum \mathrm{Y}^{2}$	5506,	and	XY $=$		BTL -6	Creating

	Coefficient of correlation between marks in Maths \& English $=0.60$ i. Estimate the marks in English when marks in Maths is 70 ii. Estimate the marks in Maths corresponding to 54 marks in English					
PART C						

