(An

DEPARTMENT OF MANAGEMENT STUDIES

QUESTION BANK

II SEMESTER
1915201- APPLIED OPERATIONS RESEACH
Regulation - 2019
Academic Year 2019-2020

Prepared by
Dr. Radha Ganesh Kumar - Asst. Professor (Sel.G) and HOD Mr.B. Sam Paul - Asst. Professor (OG)

DEPARTMENT OFMANAGEMENT STUDIES QUESTION BANK

SUBJECT

SEM / YEAR	$: 1915201$-APPLIED OPERATIONS RESEACH			
UNIT - I -INTRODUCTION TO LINEAR PROGRAMMING (LP)				SYLLABUS: Introduction to applications of operations research in functional areas of management.
:---				
Linear Programming-formulation, solution by graphical and simplex methods, Special cases. Dual simplex method. Principles of Duality. Sensitivity Analysis.				

PART- A			
S.NO	QUESTIONS	BT LEVEL	COMPETENCE
1.	Define Operations Research (OR).	Level 1	Remembering
2.	Differentiate between Simplex and Big M Method	Level 2	Understanding
3.	How do you show your understanding unbounded solution?	Level 3	Applying
4.	Categorize the forms of LPP.	Level 4	Analysing
5.	Discuss why is two phase method is better than Big M method?	Level 5	Evaluating
6.	Interpret the usage of Sensitivity Analysis in LPP.	Level 6	Creating
7.	What are the assumptions and requirements of LPP?	Level 1	Remembering
8.	Compare Dual Simplex and Duality.	Level 2	Understanding
9.	Identify the Advantages of duality.	Level 3	Applying
10.	What do you think about Infeasible solution?	Level 4	Analysing
11.	How will you solve LPP graphically?	Level 5	Evaluating
12.	Conclude your understanding on the mathematical formulation of LPP.	Level 6	Creating
13.	Define basic variables and artificial variables.	Level 1	Remembering
14.	Compare Slack variable \& Surplus Variable.	Level 2	Understanding
15.	Give some example for the role of Surplus variable \& Slack Variable in the simplex method	Level 3	Applying
16.	How would you apply Artificial variable?	Level 4	Analysing
17.	What is Big M Method?	Level 1	Remembering
18.	Distinguish simplex and Big M method	Level 2	Understanding
19.	What do you mean by Duality? List the Rules for primal and dual.	Level 1	Remembering
20.	What is Shadow price?	Level 1	Remembering

www.FirstRanker.com

PART- B								
S.NO	QUESTIONS						BT LEVEL	COMPETENCE
1.	Maximise $Z=3 x+4 y$ subject to $\begin{aligned} & 2 x+5 y \leq 60, \\ & 4 x+2 y \leq 40 . \end{aligned}$ $x, y>0$. Solve by Graphical Method (i) Plot the graph					(8)	Level 1	Remembering
2.	$\operatorname{Min} Z=20 x_{1}+10 x_{2}$ subject to $\begin{aligned} & x_{1}+2 x_{2} \leq 40, \\ & 3 x_{1}+x_{2} \geq 30, \\ & 4 x_{1}+3 x_{2} \geq 60, \\ & x_{1}, x_{2} \geq 0 . \end{aligned}$ Solve by Graphical Method, (i) Plot the graph					(8)	Level 2	Understanding
3	$\begin{aligned} & \text { Max } Z=5 \times 1+4 \times 2 \text { subject to } \\ & x_{1}-2 x_{2} \leq 1, \\ & x_{1}+2 x_{2} \geq 3, \\ & x_{1}, x_{2} \geq 0 \text {. Solve Graphically. Which one is the best } \\ & \text { solution? } \end{aligned}$						Level 3	Applying
4.	A Plant Manufacturer 2 Product A \& B. The Profit Contribution of each product has been estimated as Rs. 300 for product A and Rs. 400 for Product B. Each Product passes through 3 departments of the plant. The time required for each product and total time available in each department is as follows. The company has a contract to supply atleast 300 units of Product B per month. Formulate the LPP (i)					(5)	Level 4	Analysing
5.	Solve the following LPP by graphical method. Maximize $\mathrm{Z}=3 \mathrm{x}_{1}+2 \mathrm{x}_{2}$ Subject to$\begin{aligned} & -2 x_{1}+x_{2} \leq 1, \\ & x_{1} \leq 2, \\ & x_{1}+x_{2} \leq 3 \\ & \quad \text { and } x_{1}, x_{2} \geq 0 \end{aligned}$						Level 5	Evaluating

www.FirstRanker.com

	product $1,2,3$ is Rs.4,Rs.8,Rs. 6 respectively. It is assumed that all the amount produced are consumed in the market			
13.	Using dual simplex method, solve and find the optimum solution for the given LPP. $\begin{aligned} & \text { Maximize } Z=6 x_{1}+4 x_{2}+4 x_{3} \\ & \text { Subject to } 3 x_{1}, x_{2}+2 x_{3} \geq 2 \\ & 2 x_{1}+x_{2}-x_{3} \geq 1 \\ & -x_{1}+x_{2}+2 x_{3} \geq 1 \& \\ & \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{aligned}$		Level 4	Analysing
14.	Evaluate by using dual simplex method and solve the LPP. $\begin{array}{ll} \text { Minimize } Z=2 x_{1}+x_{2} \\ \text { Subject to } & 3 x_{1}+2 x_{2} \geq 3 \\ & 4 x_{1}+3 x_{2} \geq 6 \\ & x_{1}+x_{2} \leq 5 \& x_{1}, x_{2} \geq \end{array}$ (i) Determine the dual simplex table (ii) Find the value of $\mathrm{x}_{1}, \mathrm{x}_{2}$	(5) (8)	Level 1	Remembering

	PART - C		
S.No	Questions	$\begin{gathered} \text { BT } \\ \text { LEVEL } \end{gathered}$	COMPETENCE
1.	$\begin{aligned} \text { Max } Z= & 300 x+400 y \text { subject to } \\ & 2 x+3 y \leq 1600, \\ & 3 x+2 y \leq 1500, \\ & x+y \leq 700, \\ & y \geq 300, x, y \geq 0 \text { Solve by Graphical Method, choose the } \\ & \text { value of } x \& y \text { which maximizes profit. } \end{aligned}$	Level 1	Remembering
2.	Solve the following LPP by graphical method. Minimize Z=6000x1+4000x ${ }_{2}$ Subject to $\begin{gathered} 3 x+x_{2} \geq 40 \\ x_{1}+2.5 x_{2} \geq 22 \\ 3 x_{1}+3 x_{2} \geq 40 \\ \text { and } x_{1}, x_{2} \geq 0 \end{gathered}$	Level 2	Understanding
3.	Develop a Simplex Table and Solve Max $Z=3 \times 1+2 \times 2$, Subject to $\begin{aligned} & x 1+x 2 \leq 4, \\ & x 1-x 2 \leq 2 \\ & x 1, x 2 \geq 0 . \end{aligned}$	Level 3	Applying
4.	Solve by using Simplex Method. Maximize $Z=3 x+5 y$ Subject to the constraints $\begin{gathered} x+y \leq 60 \\ x \leq 40 \\ y \leq 30 \\ x, y \geq 0 \end{gathered}$	Level 1	Remembering

UNIT - II LINEAR PROGRAMMING EXTENSIONS

SYLLABUS: Transportation Models (Minimizing and Maximizing Problems) - Balanced and unbalanced Problems - Initial Basic feasible solution by N-W Corner Rule, Least cost and Vogel's approximation methods. Check for optimality. Solution by MODI /. Case of Degeneracy. Trans-shipment Models. Assignment Models (Minimising and Maximising Problems) - Balanced and Unbalanced Problems. Solution by Hungarian and Branch and Bound Algorithms. Travelling Salesman problem.

PART - A

S.NO	QUESTIONS				BT LEVEL	COMPETENCE
1.	Define Transportation \& Transhipment.				Level 1	Remembering
2.	Differentiate balanced transportation problem \& Unbalanced Transportation Problem.				Level 2	Understanding
3.	How would you show your understanding on unbalanced transportation problem?				Level 3	Applying
4.	Categorize the Phases of transportation model.				Level 4	Analysing
5.	Construct th transportatio	asic rob 1 2 1 5 7	$\begin{aligned} & \text { le so } \\ & \hline \mathbf{3} \\ & \hline 11 \\ & \hline 6 \\ & \hline 15 \\ & \hline \mathbf{3} \\ & \hline \end{aligned}$	or the following SUPPLY 6 1 10	Level 5	Evaluating
6	Interpret the need for Optimum solution in transportation.				Level 6	Creating
7.	What do you mean by Least cost method (LCM)?				Level 1	Remembering
8.	Compare Vogel approximation method (VAM) \& Least Cost Method.				Level 2	Understanding
9.	How do you represent a travelling salesman problem through mathematical formulation?				Level 3	Applying
10.	Analyse the rules of travelling salesman Problem.				Level 4	Analysing
11.	Discuss the meaning of Assignment				Level 5	Evaluating
12.	Compare Balanced assignment problem \& Unbalanced Assignment Problem.				Level 6	Creating
13.	What example can you give for Unbalanced assignment problem?				Level 1	Remembering
14.	How will you resolve degeneracy in Transportation Problem?				Level 2	Understanding
15.	Classify transportation problem.				Level 3	Applying

www.FirstRanker.com
www.FirstRanker.com

16.	Examine the Steps in Hungarian algorithm.	Level 4	Analysing
17.	What is Branch and bound algorithm in Assignment?	Level 1	Remembering
18.	Compare Assignment and transportation Problem.	Level 2	Understanding
19.	What do you mean by Travelling Salesman Problem?	Level 1	Remembering
20.	What is Restricted Assignment?	Level 1	Remembering

www.FirstRanker.com

www.FirstRanker.com

PART - C			Marks	BT Level	Competence
S.No		Questions Assume that you are an OR specialist. Identify the procedure for each of the following Method to the employees in order to help them achieve solution to Transportation Problems. Northwest Corner Cell Method			Remembering
	a	(3)			
	b	Least Cost cell Method	(4)		
	c	Vogel's Approximation Method	(4)		
	d	U V Method.	(4)		

2.	Solve the following transportation problem, in which ais the availability at Origin Oand bjis the requirement at the destination Dand cell entries are unit costs of transportation from any origin to any destination: Predict the allocation to minimize the cost.		Level 2	Understanding
3.	A company has a team of 4 Salesman and the company wants to do in 4 districts. Considering the capabilities of salesmen and nature of the district, the company has estimated the profit per day in Rs. For each salesmen in each district as follows. Develop the best assignment schedule and analyze the total cost.		Level 3	Applying
4.	Five operators have to be assigned to Five Machines. The assignment costs are given in thetablebelow. Machine Analyse using Hungarian algorithm \& find out the assignment to minimize the cost.		Level 4	Analyzing

UNIT - III - INTEGER PROGRAMMING AND GAME THEORY

SYLLABUS: Integer Programming - Introduction and types - Game Theory-Two-person Zero sum games-Saddle point, Dominance Rule, graphical and LP solutions, Nash Equilibrium

18.	Summarize how graphs and LP solution are used in Game theory.	Level 2	Understanding
19.	What is a Decision Tree?	Level 1	Remembering
20.	Define Dominance principle.	Level 1	Remembering

- PART-C									
S.No	Questions							$\begin{gathered} \text { BT } \\ \text { Level } \end{gathered}$	Competence
1.	Using Dominance property Solve.							Level 1	Remembering
	B								
					I	II	IIIIV		
			1		-5	3	120		
			2		5	5	46		
			3		-4	-2	$0-5$		
2.	Examine the 2 n Game by the Method of Sub Game:							Level 2	Understanding
		B1	B2	B3					
	A1	1	3	11					
	A2	8	5	2					

3.		In a game of matching coins with 2 players, A wins 1 unit value when there are 2 heads, wins nothing when there are 2 tails and looses $1 / 2$ unit value when there are one head and one tail. Develop Pay Off matrix and value of the game.		Level 3	Applying
4.	iii	Assume you have to choice of 3 strategies for advertising and you have one major Analyse the theory on Two-person sum games competitor with 3 strategies. What are the assumptions of Game? Find value of game.	(5) (5) (5)	Level 4	Analysing

UNIT - IV INVENTORY MODELS, SIMULATION AND DECISION THEORY

SYLLABUS: Inventory Models - EOQ and EBQ Models (With and without shortages), Quantity Discount Models. Decision making under risk - Decision trees - Decision making under uncertainty. Monte-carlo simulation.

PART-A			BT LEVEL
S.NO	QUESTIONS	Level 1	Remembering
1.	Define inventory.	Level 2	Understanding
2.	Classify the Forms of inventory.	Level 3	Applying
3.	Identify the Objectives/significance of inventory model.	Level 4	Analysing
4.	Highlight the importance of Reorder level.	Level 5	Evaluate
5.	Discuss the concept of Lead time.	Level 1	Remembering
6.	Interpret the Types of stock replenishment.	Level 2	Understanding
7.	List the Basic inventory models.	Level 3	Appyling
8.	Compare Ordering Cost and Carrying Cost.	Level 5	Evaluating
9.	Identify when shortage cost and stock out cost arises?	Level 1	Remembering
10.	Analyze why safety stock is maintained.	Level 2	Understanding
11.	Discuss the concept of Quantity Discount Model.	Level 3	Applying
12.	Interpret the meaning of EOQ \& EBQ.	Level 4	Analysing
13.	What are random and pseudo random numbers?	Level 5	Evaluating
14.	Explain Monte Carlo Method.	Level 1	Remembering
15.	Summarize the concept of EMV.	Level 2	Understanding
16.	Whatinference can you make aboutholdingcost?		

www.FirstRanker.com
www.FirstRanker.com

17.	What is Shortage Cost?	Level 3	Applying
18.	Classify and explain the various conditions under which decisions are made.	Level 1	Remembering
19.	What is meant by the following terms in inventory management: i)Carrying cost ii) shortage costs	Level 2	Understanding
20.	What is Decision theory? List the problems that can be solved by Simulation.	Level 3	Applying

S.NO	PART - B QUESTIONS		Marks	BT LEVEL	COMPETENCE
1.	Alpha industry needs 5400 units per year of a bought out component which will be used in its main product. The ordering cost is Rs.250 per order and the carrying cost per unit per year is Rs.30. Which is the best order quantity?		Level 1	Remembering	
	(i)	Find the number of order per year and Frequency of orders?	(5)		
2.	A stockiest has to supply 12000 units of a product per year to his customer. Demand is fixed and known. Shortage cost is assumed to be infinite. Inventory holding cost is 20 paise per unit per month. Ordering Cost is Rs. 250 and purchase price is Rs.10 per unit. Estimate the EOQ	(8)	Level 2	Understanding	
(i)					

www.FirstRanker.com
www.FirstRanker.com

www.FirstRanker.com

UNIT - V QUEUING THEORYAND REPLACEMENT MODELS

SYLLABUS:Queuing Theory -Single and Multi-Channel models-infinite number of customers and infinite calling resource Replacement Models-Individuals replacement Models (With and without time value of money) - Group Replacement Models.

PART - A			BT LEVEL
COMPETENCE			
S.NO	QUESTIONS	Level 1	Remembering
2.	Define Queue.	Level 2	Understanding
3.	In a bank, 20 customers on an average are served by a cashier in an hour. If the service time has exponential distribution, what is the probability that it will take more than 10 minutes to serve a customer?	Level 3	Applying
4.	Classify the types of Queue.		

www.FirstRanker.com

13.	Distinguish between breakdown maintenance and preventive maintenance.	Level 1	Remembering
14.	How do you show your understanding on Little's formula in queuing theory?	Level 2	Understanding
15.	Categorize Queue Discipline.	Level 3	Applying
16.	Develop Kendall's Notation of a Queue.	Analysing	
17.	What is "Collusion" in Queue Discipline?	Level 1	Remembering
18.	Compare the Queue Length and No. of Customers in the System.	Level 2	Understanding
19.	Distinguish between individual replacement and group replacement?	Level 3	Applying
20.	Describe Kendall's Notation for identifying a Queue Model with two channels, Poisson arrivals, exponential service Unlimited Queue and infinite calling population.	Level 1	Remembering

S.No	PART - B QUESTIONS	Marks	$\begin{array}{c\|} \hline \text { BT } \\ \text { LEVEL } \end{array}$	COMPETENCE
1.	The cost of machine is Rs.16, 00 and scrap value is Rs.1,100. Maintenance Cost form for machine are as follows: When should the machine be the replaced?		Level 1	Remembering
2.	The following table gives to cost of spares per year, overhead cost of maintenance per year and resale value of certain equipment whose purchase price is Rs. 50,000: Illustrate when the machine can be replaced.		Level 2	Understanding
3.	A Taxi owner estimates from his past records that the cost per year for operating a taxi whose purchase price when new is Rs.60,000 are as follows. After 5 years the operating cost is Rs. $6000 \times \mathrm{K}$, Where " k " is $6,7,0,9,10$ (age). If the resate value decreases by 10% of		Level 3	Applying

		purchase price each year, calculate the best time of replacement if time value is not implemented?			
4.	(i)	A cost of a machine is 6100 and its scrap value is Rs. 100. The maintenance Cost from the experience are as follows:	(8)	Level 4	Analysing
5.	(i)	Week $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$ $\mathbf{7}$ Conditional Probability 0.07 0.15 0.25 0.45 0.75 0.9 1 is Rs.1.25 per item GRP Cost is Rs. 60 Paise Per item. Estimate the IRP Cost Predict GRP cost and Determine whether GRP or IRP is the Best Policy	(5)	Level 5	Evaluating
6.		Machine A Costs Rs.9000. Annual Operating Cost is Rs. 200 for the $1^{\text {st }}$ year and then increases by 2000 every year. Determine the best age at which to replace the machine. Assume the machine has no resale value. Machine B Costs Rs.10,000. Annual operating cost is Rs. 400 for the $1^{\text {st }}$ year and then increases by 800 every year. No resale value. You have now a machine of type A which is one year old. Conclude if M/c A can be replaced by $\mathrm{M} / \mathrm{c} B$. Is so, When?		Level 6	Creating
7.		A manufacturer is offered two machines A and B . A has cost price of Rs.2,500, its running cost is Rs. 400 for each of first years and increased by Rs. 100 every subsequent year, Taking money's value as 10% per year, when machine should be replaced?		Level 1	Remembering
8.		The maintenance cost and resale value per year of a machine whose purchase price is Rs. 7000 is given below : When should the machine be replaced?		Level 2	Understanding

| 14. | A T.V repairman finds that the time spent on his job has
 an exponential distribution with mean 30 minutes. If he
 repairs sets in the order in which they came in and if the
 arrival of sets is poisson with an average rate of 10 per
 8 hour day, how will you calculate the expected idle
 time day? How much is the queue length and how
 many TV sets would be in the shop ? | Level 1 | Remembering |
| :--- | :--- | :--- | :--- | :--- |

PART - C											
S.No		Questions							$\begin{aligned} & \text { Mar } \\ & \text { ks } \end{aligned}$	$\begin{gathered} \text { BT } \\ \text { Level } \end{gathered}$	Competence
1.	(i)	Assume an insurance company has three claims adjusters in its branch office. People with claims against the company are found to arrive in a Poisson fashion, at an average rate of 20 per 8 -hour day. The amount of time that an adjuster spends with a claimant is found to have an exponential distribution, with mean service time 40 minutes. Claimants are processed in the order of their appearance. How many hours a week can an adjuster expect to spend with claimants?							(8)	Level 1	Remembering
2.	(i) (ii) (iii)	In a reservation counter with a single server, customer arrive with the inter-arrival time as the exponential distribution with mean 10 minutes. The service time is also assumed to be exponential with mean 8 minutes. Predict the idle time of the server							(5) (5) (5)	Level 2	Understanding
3.		An electronic equipment contains 500 resistors. When any resistor fails, it is replaced. The cost of replacing a resistor individually is Rs.20. If all the resistors are replaced at the same time, the cost per resistor is Rs. 5. The percentage of surviving, $\mathrm{S}(\mathrm{i})$ at the end of month i is given below; Apply IRP \&GRP \& Find which is best.								Level 3	Applying

www.FirstRanker.com

