

www.FirstRanker.com

tRae.co tRae.co tRae.co, tRae.co tRae.co

MST-I

Subject Name:-Physics (BSC Section:- CE12,CE56	C-18101) Semester-2 nd	Max. Marks: 24 Time: 90 Minutes		
<u>Note</u>:- (i) All questions are co (ii) Marks for each question a (iii) Use of calculator is allow	ompulsory. are shown in the bra ved.	ckets.		
<u>Q.1.</u> Write Maxwell's Elec	tromagnetic equat	ions for vacuum.	(2)	
Q.2. What makes laser light	t different from n	ormal?	(2)	
Q.3. A step-index fiber has The cut-off angle for light (a) What is the numerical a (b) What is the index of res (c) Find the Fractional Ref (d) If the fiber were submer cut-off angle at the launching	a core index of re- entering the fiber fiperture of the fiber fraction of its clad fractive Index chan rsed in water, whan ng end of fiber?	efraction 1.425. from air is found to be er? dding? nge. at would be the new	8.50°	
Q.4. Explain the working o	of a Continuous W	ave (CW) laser.	(4)	
Q.5. Derive Maxwell's Induction.	Electromagnetic	equation from Farad	ay's	Law of EM (4)
Q.6. (a) Write the stater Theorem. (b) Give brief significance	nents of Gauss of Einstein coeffic	Divergence Theorem cients and show how the	and	Stoke's Curl (2) re related. (3)

(c) What causes most fiber optic attenuation and propagation losses? (3)

irstRanker.com irstRanker.com, irstRanker.com						
Department of Applied Sciences						
Program		B.Tech.(ME1,ME2,	Semester	2		
_		ME5,ME6)				
Subject Code		BSC-18101	Subject Title	Engg. Physics		
Mid Semester Test (MST)		1	Course	Dr Ha	Dr Harpreet Kaur Grewal	
No.			Coordinator(s)		-	
Max. Marks		24	Time Duration	1 hou	10ur 30 minutes	
Date of I	MST	23 rd February,	Roll Number			
		2019				
Note: At	tempt all questions					
Q. No.		Question	1		Marks	
Q1	Differentiate Stimulated Emission and Spontaneous emission?				2	
Q2	In LASER, in place of 'A', it should be 'O' Why?				2	
Q3	Explain the terms A	4				
	mean by single mo					
Q4	An optical fiber has	4				
	1.50.Find NA of th					
Q5	Discuss the variation of Fermi Level with temperature for extrinsic			4		
	semiconductor.					
Q6	(a) Explain the energy level diagram of He- Ne Laser and what is			6		
	the role of helium in He-Ne Laser?					
(b) What do you maan by Extrinsic Comison ductor?					2	
		2				
	N	WW.FirstRall				

www.FirstRanker.com

tRe.o tRe.o tRe.o, tRe.o tRe.o

MST-I

Subject Name:-Physics (BSC-18101)Max. Marks: 24Section:- PE12Semester-2ndTime: 90 Minutes

<u>Note</u>:- (i) All questions are compulsory.
(ii) Marks for each question are shown in the brackets.
(iii) Use of calculator is allowed.

Q.1. What is meant by Inverted Population in laser? (2)

Q.2. Calculate the de-Broglie wavelength of a virus particle accelerated by a potential difference of 30,000V. (2)

Q.3. Describe the construction and working of Helium Neon laser. (4)

<u>Q.4.</u> Show that how group velocity is related to phase velocity. (4)

Q.5. Write a note on attenuation & propagation loss mechanisms in fibres. (4)

Q.6. (i) Define acceptance angle for an optical fibre. Show that it is related to numerical aperture. (5)

(ii) An optics fibre is made of glass with refractive index 1.55 and is clad with another glass of refractive index 1.51. The fibre has a core of diameter 50 μ m and is used at a light wavelength of 0.8 μ m. Determine:

(a) Numerical aperture (b) Acceptance angle (c) V-number for the fiber. (3)

irstRanker.com irstRanker.com, irstRanker.com						
Department of Applied Sciences						
Program		B.Tech.(CE34)	Semester	2		
Subject Code		BSC-18101	Subject Title	Physic	Physics	
Mid Semester Test (MST)		1	Course	Dr Harpreet Kaur Grewal		
No.			Coordinator(s)			
			Subject Expert	Dr Ra	andhir Singh	
Max. Marks		24	Time Duration	1 hour	hour 30 minutes	
Date of MST		23 rd Feb, 2019	Roll Number			
Note: At	tempt all questions					
Q. No.	Question				Marks	
01					2	
QI	A vector field is given as : $\vec{A} = xv\hat{i} + vz\hat{k}$. Find $\vec{\nabla} \times \vec{A}$ and tell whether					
	the field is conservative or not.					
Q2	Define Poynting vector. Give its significance.				2	
Q3	Define Meissner effect and differentiate type-I, type-II superconductors.					
Q4	Derive London equations and give their significance.					
					4	
Q5	The critical magnetic field for a superconductor at absolute zero is					
	$9 \times 10^4 Am^{-1}$ and at 6K is $5 \times 10^4 Am^{-1}$. Find the critical temperature and					
	energy required to		4			
					4	
Q6	(i) Show that for plane electromagnetic waves propagating in				5	
	vacuum, electric field is perpendicular to magnetic field as					
	well as to direction of propagation.					
		3				
	(11) write Maxwell's equations and give their significance.				5	

irstRanker.com irstRanker.com, irstRanker.com						
Department of Applied Sciences						
Program		B.Tech.(ME34)	Semester	2		
Subject Code		BSC-18101	Subject Title	Physic	Physics	
Mid Semester Test (MST)		Γ) 1	Course	Dr Ha	Dr Harpreet Kaur Grewal	
No.			Coordinator(s)			
			Subject Expert	Dr Ra	Randhir Singh	
Max. Marks		24	Time Duration	1 hour	1 hour 30 minutes	
Date of MST		23 rd Feb, 2019	Roll Number			
Note: At	ttempt all questi	ons				
Q. No.	Question			Marks		
01						
QI	A vector field	2				
	the field is conservative or not					
Q2	Define Poynting vector. Give its significance.				2	
-						
Q3	Define stress and strain and give their types.					
					4	
Q4	Discuss briefly, the motion of a lightly damped oscillator.					
	-01				4	
Q5	The displacement of a particle executing SHM is changing with time as					
	x=Acos ω_0 t. Find the displacement at which kinetic energy of the particle					
	is equal to its p	4				
0(4	
Q6	(1) Sho	5				
	vacuum, electric field is perpendicular to magnetic field as					
	wen					
	(ii) Wri	3				
	(ii) which has well's equations and give their significance.					
		<i>N</i>				