www.FirstRanker.com

EM WAVES AND DIELECTRICS

1. Write Maxwell's equations in differential form. (2) \{JUN 15 [GNE]\}
2. Derive Maxwell's electromagnetic wave equation for a non-conducting medium. (4) \{JUN 15 [GNE]\}
3. Show that electrostatic field is equal to the negative of potential gradient and hence show that electrostatic field is conservative. (4) \{JUN 15 [GNE]\}
4. What is the physical significance of divergence of of a vector field? (2) \{JUN 15 [PTU]\}
5. What do you mean by displacement current? (2) \{DEC 14 [GNE]\}
6. Show that velocity of plane electromagnetic waves in free space is given by $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$. (4) \{DEC $\left.\left.14[\mathrm{GNE}]\right]\right\}$
7. Using Maxwell's equations prove that $\vec{\nabla} \cdot \vec{J}+\frac{\partial \rho}{\partial t}=0$. (4) $\{\mathrm{DEC} 14[\mathrm{GNE}]\}$
8. Derive differential form of ampere's circuital law for (i) steady currents and (ii) varying currents. (4) \{JUN 14 [GNE]\}
9. Derive Maxwell's electromagnetic wave equation for vacuum. (4) \{JUN 14 [GNE]\}
10.Define Poynting vector. Give its significance. (2) \{JUN 14 [GNE]\}
10. What is the origin of displacement current density? (2) \{JUN 14 [GNE]\}
12.What is dielectric polarization? (2) \{Dec 2013 [GNE]\}
13.Derive Maxwell's electromagnetic wave equation and hence find the velocity of light in vacuum. (4) \{Dec 2013 [GNE]\}
14.Give an example of lamellar and solenoidal vector fields. (2) \{Jun 2013 [GNE]\}
15.Define divergence of a vector field. Write its expression in terms of Cartesian coordinates and discuss its physical significance. (4) \{Jun 2013 [GNE]\}
11. Use Maxwell's equations to deduce wave equations in terms of $\vec{E} \& \vec{H}$ field vectors for free space. (4) \{Jun 2013 [GNE]\}
17.What is the significance of divergence and curl of a vector? (2) \{Dec 2012 [GNE]\}
12. What is dielectric polarization? Explain. (2) \{Dec 2012 [GNE]\}
19.Write Maxwell's equations and discuss their significance. (4) \{Dec 2012 [GNE]\}
20.In an electric field, the potential is given as $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sqrt{4 \mathrm{x}^{2}+3 y^{2}+9 z^{2}}$ Volt. Calculate electric field at the point $(1,2,3)$. (4) $\{$ Dec 2012 [GNE]\}
