

www.FirstRanker.com

www.FirstRanker.com

Code: 9D12104

M.Tech I Semester Regular & Supplementary Examinations February 2016

SHALLOW FOUNDATIONS

(Geotechnical Engineering) (For students admitted in 2011, 2012, 2013, 2014 & 2015 only)

Time: 3 hours Max Marks: 60

> Answer any FIVE questions All questions carry equal marks

- (a) What do you understand by site investigation? What are the different purposes for which site investigations are done?
 - (b) How would you decide the depth of exploration and the lateral extent of investigations?
- 2 (a) Discuss various types of soil samples for obtaining undistributed samples.
 - (b) Explain design features affecting the sample disturbance.
- (a) How would you fix the depth of foundation?
 - (b) Explain the procedure for the design of a: (i) strip footing. (ii) combined footing.
- (a) Determine the ultimate bearing capacity of a strip footing 1.20 m wide and having the depth of foundation 1.0 m. Use Terzaghi's theory and assume general shear failure. Take $\phi = 35^{\circ}$, $\gamma = 18 \, kN/m^3$ and $c = 15 \, kN/m^2$, $N_c = 57.8$, $N_g = 41.4$, $N_y = 42.4$.
 - (b) A footing 2 m square is laid at a depth of 1.3 m below the ground surface. Determine the net ultimate bearing capacity. Use IS code method. Take $\gamma = 20 \, kN/m^3$, $\phi = 30^\circ$, c = 0.
- Estimate the consolidation settlement of the foundation of size $1m \times 2m$ from the following 5 properties. Take incremental stress as 50 kN/m2, and water table as 2.5 m from ground level.

H = 2.5 mTop layer = sand $y = 16 \, kN/m^3$ Middle layer = sand $H = 0.5 \, \text{m}$ $y = 17.5 \, kN/m^3$

Bottom layer = clay \(\square{1} \) $\gamma = 16 \, kN/m^3$, LL = 45%

- 6 Analyze the determination of allowable bearing pressure in sand based on settlement consideration.
- 7 For a mat foundation with dimensions $18m \times 12m$ the dead and live load on the mat is 45 kN. The mat is to be placed on clay with $C_u = 40 \, kN/m^2$. The unit weight of the clay is 17.6 kN/m^3 . Find the depth (D_f) of the mat for a fully compensated foundation. What will be the depth of the mat (D_f) for factor of safety of 3 against bearing capacity failure?
- Analyze the influence of the rigidity of superstructure on the differential settlement of foundations. 8
