

www.FirstRanker.com

www.FirstRanker.com

Code: 9D12103

M.Tech I Semester Regular & Supplementary Examinations January/February 2017 NUMERICAL METHODS

(Geotechnical Engineering)

Time: 3 hours

Max. Marks: 60

Answer any FIVE questions All questions carry equal marks

Using Picard's, obtain second degree approximation to the solution.

$$\frac{d^2y}{dx^2} = x^3 \frac{dy}{dx} + x^3 y \text{ with } y(0) = 1, y'(0) = \frac{1}{2}$$

2 Solve the system of equation using Gauss elimination method.

٢2	1	1	-21	$ x_1\rangle$		r-101
4	0	2	1	$\left(x_{2} \right)$		8
3	2	2	0	x_3	-	7
l1	3	2	-1	$\langle x_4 \rangle$		$\begin{bmatrix} -10\\ 8\\ 7\\ -5 \end{bmatrix}$

3 (a) State Lagrange's interpolation method and use it to find the value of y at x = 6 from the following data.

 X:
 3
 7
 9
 10

Y: 168 120 72 63

- (b) Explain interpolation by central difference method.
- 4 (a) Taking E as fundamental operator, prove ∆ = E 1.
 - (b) Explain Lagrange's method of inverse interpolation.
- 5 Find the cubic polynomial which takes the following values:

	X:	0	1(2	3					
	f(x)	1	2	1	10					
hence evaluate f(4)										

- 6 (a) Explain displacement approach for finite element analysis based on piecewise approximation.
 (b) Write the steps to solve a 2D problem by using finite element method.
- 7 Explain finite element technique using minimization of total potential energy principle.
- 8 Write short notes on:
 - (a) Stability analysis of sheet piles.
 - (b) Positions of anchorage for sheet piles.
