## Code: 9D15103

## M.Tech I Semester Regular \& Supplementary Examinations January/February 2017 ADV ANCED MECHANICS OF SOLIDS <br> (Machine Design)

Time: 3 hours
Max. Marks: 60

## Answer any FIVE questions <br> All questions carry equal marks

Determine the shear center location $C$ for an aircraft semi-circular box beam whose cross section is shown in figure blow.


The masonry column carries an eccentric load $P=12 k N$ as shown in the figure below:

(a) Locate the points on the cross section where the neutral axis crosses the $y$ - and the $z$-axes.
(b) Determine the maximum tensile and compressive normal stresses.

The curved beam in figure is subjected to a load $P=120 \mathrm{kN}$. The dimensions of section $B C$ are also shown in figure below. Determine the circumferential stress at $B$ and radial stress at the junction of the flange and web at section BC.


4 (a) What is Prandtl elastic membrane analogy? Explain.
(b) A rod with rectangular cross section is used to transmit torque to a machine frame with a width of 40 mm . The first 3 m length of the rod has a depth of 60 mm , and the remaining 1.5 m length has a depth of 30 mm . The rod is made of steel for which $G=77.5 \mathrm{GPa}$. For $\mathrm{T}_{1}=750 \mathrm{~N}-\mathrm{m}$ and $\mathrm{T}_{2}=400 \mathrm{~N}-\mathrm{m}$, determine the maximum shear stress in the rod. Determine the angle of twist of the free end.

Contd. in page 2

## Code: 9D15103

Derive the stresses for two bodies in line contact : Loads normal and tangent to contact area.
6 (a) What is plane stress and plane strain? Explain with suitable example.
(b) For a solid in a state of plane stress, show that if there are body forces $P_{x}, P_{y}$ per unit volume in the direction of the axes x , y respectively, the compatibility equation can be expressed in the form:

$$
\nabla^{2}\left(\sigma_{x x}+\sigma_{y y}\right)=-(1+v)\left(\frac{\partial p_{x}}{\partial x}+\frac{\partial p_{y}}{\partial y}\right)
$$

7 (a) What do you mean by compatibility equations? What is the necessity of compatibility equations? Write the compatibility equations in Cartesian co-ordinates.
(b) In planar problems, stress components are expressed in Cartesian co-ordinate system where as the location at which stress is considered is defined in polar co-ordinates. Why such mixed approach adopted? Discuss.

8 (a) Derive the equations of equilibrium in polar co-ordinates for radial direction \& tangential direction.
(b) The stress components at a point are $\sigma_{x}=-50, \sigma_{y}=30, \sigma_{z}=20 . \tau_{x y}=-60, \tau_{y z}=40, \tau_{x z}=50 \mathrm{MPa}$. Determine the principle stresses and principle directions.

