# M.Tech I Semester Supplementary Examinations August/September 2018 ADVANCED OPTIMIZATION TECHNIQUES 

(Common to PE \& PEED)
(For students admitted in 2013, 2014, 2015 \& 2016 only)
Time: 3 hours
Max. Marks: 60
Answer any FIVE questions
All questions carry equal marks
1 (a) Write the procedure involved in converting inequality constraints (both $\leq a n d \geq$ ) into equality constrains in linear programming problems.
(b) Write the dual of the problem:

$$
\begin{array}{r}
\text { Maximize } Z=5 a-2 b \\
\text { Subject to: } 2 a+b \leq 9 \\
a-2 b \leq 2 \\
-3 a+2 b \leq 3
\end{array}
$$

Where $\mathrm{a}, \mathrm{b}, \geq 0$
2 A salesman wants to visit A, B, C, D and E. He does not want to visit any city twice before completing his work. Find the least cost route.

|  | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | - | 2 | 5 | 7 | 1 |
| B | 6 | - | 3 | 8 | 2 |
| C | 8 | 7 | - | 4 | 7 |
| D | 12 | 4 | 6 | - | 5 |
| E | 1 | 3 | 2 | 8 | - |

3 Using the method of Lagrange multipliers:

$$
\begin{aligned}
& \text { Minimize } f(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
& \text { Subject to: } g_{1}(x)=x_{1}-x_{2} \\
& g_{2}(x)=x_{1}+x_{2}+x_{3}-1
\end{aligned}
$$

4 Calculate the gradient of the following function at the given point by the central difference approach with a 1 percent change in the point and compare them with the exact gradient:

$$
f(x)=12.096 x_{1}^{2}+21.504 x_{2}^{2}-1.732 x_{1}-x_{2} a t(5,6)
$$

5 (a) Write the steps involved in writing a sample genetic algorithm.
(b) Explain the Roulette wheel analogy for the reproduction procedure in genetic algorithms.

6 Explain the concept of genetic programming (GP) and write the procedure for solving differential equations using GP.

7 (a) Explain the terms population, generation and niche used in genetic algorithms.
(b) Explain the applications of multi objective GA problems.

8 A beam of rectangular cross section is subjected to a maximum bending moment of $M$ and a maximum shear of V . The allowable bending and shearing stresses are $\sigma$ and $\tau$, respectively. The bending stress in the beam is calculated as:

$$
\sigma=\frac{6 M}{b d^{2}}
$$

And average shear stress in the beam is calculated as:

$$
\tau=\frac{3 V}{2 b d}
$$

Where $d$ is the depth and $b$ is the width of the beam. It is also desired that the depth of the beam shall not exceed twice its width. Formulate the design problem for minimum cross-sectional area using the following data:

