

Code: 9D06104

www.FirstRanker.com

www.FirstRanker.com

M.Tech I Semester Supplementary Examinations August/September 2018

ADVANCED DATA COMMUNICATIONS

(Digital Systems & Computer Electronics) (For students admitted in 2013, 2014, 2015 & 2016 only)

Time: 3 hours Max. Marks: 60

Answer any FIVE questions All questions carry equal marks

- (a) With neat diagram, explain the following modulation schemes: (i) PSK. (ii) QAM.
 - (b) Find out the minimum bandwidth, baud and bandwidth efficiency for the following bit rates and modulation schemes are 8-QAM and 16-QAM.
 - (i) f_b = 2400 bps. (ii) f_b = 4800 bps. (iii) f_b = 9600 bps.
- 2 (a) In home two computers are connected by an Ethernet hub. In this a LAN or a WAN? Explain the reason.
 - (b) Assume 8 devices are arranged in a mesh topology. How many cables are needed? How many parts are needed for each device?
- 3 (a) Performance is inversely related to delay. When we use the internet, which of the following are more sensitive to delay: (i) Sending an e-mail. (ii) Copying a file. (iii) Surfing the internet. Explain in detail.
 - (b) How many point-to-point WAN's are needed to connect 'n' LAN's, if each LAN should be able to directly communicate with any other LAN.
- The parity check bit of (8, 4) block code are generated by C₅ = d₁ + d₂ + d₄, C₆ = d₁ + d₂ + d₃, C₇ = d₁ + d₃ + d₄, & C₈ = d₂ + d₃ + d₄, where d₁, d₂, d₃ and d₄ are message bits. Find: (i) G and H. (ii) Minimum weight of code. (iii) Error detecting capacity. (iv) Show that through 2 examples that the code can detect and correct errors.
- 5 (a) Compare and contract byte-stuffing and bit stuffing.
 - (b) Assume the only computer in the residence user PPP to communicate with the ISP. If the user sends 10 network-layer packets to ISP, how many frames are exchanged in each of the following cases: (i) Using no authentication. (ii) Using PAP for authentication. (iii) Using CHAP for authentication.
- 6 (a) Consider a space division switch with 100 inputs and outputs. What is the total number of cross points in each of the following cases: (i) Using a single crossbar. (ii) Using a multi-stage switch based on the Clos criteria.
 - (b) Consider nXk crossbar switch with 'n' inputs and 'k' outputs.
 - (i) Can we say that the switch acts as a multiplexer if n>k?
 - (ii) Can we say that the switch acts as a demultiplexer if n<k? Give reason.</p>
- We have defined the parameter 'a' as the number of frames that can fit the medium between two stations, or a = (T_p)/(T_{fr}). Another way to define the parameter is a = L_b/F_b, in which L_b in the bit length of the medium and F_b is the frame length of the medium. Show that two definitions are equivalent.
- 8 Alice and Bob are experimenting with CSMA using a W₂ Walsh table. Alice use the code (+1, -1) and Bob user the code (+1, -1). Assume that they simultaneously send a hexadecimal digit to each other. Alice sends (6)₁₆ and Bob sends (B)₁₆. Show how they can detect what are other person has sent.