Code: 9D06104

M.Tech I Semester Supplementary Examinations February/March 2018
 ADVANCED DATA COMMUNICATIONS

(Digital Systems \& Computer Electronics)
(For students admitted in 2012, 2013, 2014, 2015 \& 2016 only)
Time: 3 hours
Max. Marks: 60
Answer any FIVE questions
All questions carry ${ }_{* * * * *}^{\text {equal marks }}$
1 (a) Illustrate the amplitude shift keying and frequency shift keying.
(b) Determine the minimum bandwidth, baud and bandwidth efficiency for the following bit rates and modulation schemes BPSK and QPSK: (i) $f_{b}=2400$ bps. (ii) $f_{b}=4800$ bps. (iii) $f_{b}=9600$ bps.

2 (a) For each of the following 4 networks, discuss the consequence if a connection fails
(i) Seven devices arranged in a mesh topology.
(ii) Seven devices arranged in a star topology.
(iii) Seven devices arranged in a bus topology.
(iv) Seven devices arranged in a ring topology.
(b) What is the maximum number of characters or symbols that can be represented by Unicode?

3 (a) Distinguish between telephone network and internet? What are the similarities? What are the differences?
(b) When a party makes a local telephone call to another party, is this point-to-point or multipoint connection? Discuss in detail.

4 For a $(7,4)$ cyclic code with received vector is 0100110, with generator polynomial $g(x)=1+x+x^{3}$. Draw the syndrome computation circuit and detect and correct the error if any.

5 (a) Byte-stuff the following frame payload in which ' E ' is the escape byte, ' F ' is the flag byte and ' D ' is a data byte other than an escape or a flag character.

DEDDEDDEFDFD
(b) Assume PPP is in the authentication phase, show payload exchanged between the nodes if PPP is using: (i) PAP. (ii) CHAP.

6 (a) In a network, datagram and virtual-circuit need a routing or switching table to find the output port from which the information belonging to a destination should be sent out, but a circuit switched network has no-need for such table. Give the reason for this difference.
(b) What is the role of the address field in a packet travelling through a virtual-circuit network?

7 In a bus 1-persistance CSMA/CD with $\mathrm{T}_{\beta}=50 \mu \mathrm{~s}$ and $\mathrm{T}_{\mathrm{fr}}=120 \mu \mathrm{~s}$, there are 2 stations, A \& B. Both stations start sending frames to reach other at the same time. Since the frames collids, each station tries to retransmit. Station A comes out with $R=0$ and station B with $R=1$. Ignore any other delay including the delay for sending jamming signals. Do the frames collide again? Draw a time line diagram to prove your claim. Does the generation of a random number help avoid collision in this case?

8 (a) There are only 3 active stations in a slotted ALOHA network A, B and C. Each station generates a frame in a time slot with the corresponding probabilities $\rho_{A}=0.2, \rho_{B}=0.3$ and $\rho_{C}=0.4$ respectively.
(i) What is the throughput of each station?
(ii) What is the throughput of N / W.
(b) Check to see the following set of chips can belonging to an orthogonal systems:
$[+1,+1,+1,+1],[+1,-1,-1,+1],[-1,+1,+1,-1],[+1,-1,-1,+1]$

