Code: 9D15103

M.Tech I Semester Supplementary Examinations February/March 2018
 ADV ANCED MECHANICS OF SOLIDS

(Machine Design)
(For students admitted in 2012, 2013, 2014, 2015 \& 2016 only)
Time: 3 hours
Max. Marks: 60

Answer any FIVE questions
 All questions carry equal marks

1 (a) A ductile steel shaft is subjected to a bending moment of $10 \mathrm{kN}-\mathrm{m}$ and a torsional moment of $8 \mathrm{kN}-\mathrm{m}$. Using the maximum shear stress theory determine the diameter of the shaft assuming factor of safety 2. The yield stress of the material is $250 \mathrm{~N} / \mathrm{mm}^{2}$.
(b) Explain: (i) Maximum elastic strain theory. (ii) Octahedral stress theory.

2 Determine the shear centre of thin walled section shown in figure below.

3 A ring has 200 mm mean diameter has a rectangular cross-section with 50 mm in the radial direction and 30 mm perpendicular to the radial direction. If the maximum stress is limited to $120 \mathrm{~N} / \mathrm{mm}^{2}$, determine the tensile load that can be applied on the ring.

4 (a) Show that $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0$ in the case of torsion of solid prismatic bars.
(b) A thin walled box section having dimensions $2 a \times a \times t$ is to be compared with a solid circular section of diameter ' a '. Determine the thickness ' t ' so that the two sections have same maximum shear stress for the same torque and the same stiffness.

5 (a) Briefly explain the methods to compute contact stresses.
(b) Derive the expression for contact pressure on a single row ball bearing. If the ball diameter is 60 mm , the radius of the groove is 30 mm . The diameter of the outer face is 30 mm and the greatest compressive force on one ball is 6 kN . Calculate the contact pressure.

6 Verify about the possibility of the given stress function. If so, investigate what problems of plane stress can be solved by the stress function:

$$
\phi=\frac{A}{6}\left(x^{3}+y^{3}\right)+A_{1} x y
$$

Here A and A_{1} are arbitrary constants. Also sketch the distribution of stress.
7 Derive the expressions for a radial and circumferential stresses for a rotating hallow disc and deduce the equations for stresses at the centre of a solid disc.

