

BLOOD GROUP

- Blood grouping is based on type of antigen present on the red blood cells.
- There are more than 300 blood group systems but ABO and Rh(Rhesus) are of importance from clinical point of view.
- Other blood group systems are MNS ,
 Lutheran , Kell , Lewis , Duffy , Kidd etc.

ABO SYSTEM

Discovered by Karl Landsteiner in 1900.

 The red cells contain different types of Antigen(Agglutinogen) while plasma contains antibody(Agglutinins)

 Genes that control the system are present on chromosome 9

LANDSTEINER'S LAW

If an antigen(Ag) is present on a patient's RBC, the corresponding antibody(Ab) should not be present in patient's plasma under normal condition

Major ABO Blood Group

ABO Group	Antigen Present	Antigen Missing	Antibody Present
A	A	В	Anti-B
В	В	A	Anti-A
0	None	A and B	Anti-A&B
AB	A and B	None	None

Methods of blood grouping:

1)Slide method

2) Tube method

Tube method - better method but takes longer

Sample in tube with antiserum --- incubate it --- centrifuge it --- examine it macroscopically and microscopically for agglutination.

SLIDE METHOD

REQUIREMENTS:

- 1)3 slides
- 2)Antisera A, B
- 3) Blood samples

PROCEDURE:

Take 2 clean slides and mark them 1, 2.

www.FirstRanker.com

- Put one drop of antisera A on slide 1, one drop of antisera B on slide 2.
- Add one drop of blood to each and mix well with stick
- 4) Wait for 5 min and observe.

OBSERVATION:

- If any agglutination occurs it is visible with naked eyes as dark reddish clumps of different sizes.
- If agglutination is minimal it can be confirmed by examining it under microscope.

INTERPRETATION:

- 1)Agglutination with antisera A not with antisera B group A
- 2)Agglutination with antisera B not with antisera A group B.
- 3) Agglutination with both antisera A and B group AB
- 4) No agglutination in any slide group O

Universal donor - blood group O as no Ag so no agglutination.

Universal recepient - blood group AB as both A and B Ags present so agglutination occurs in both as no Abs present in serum.

Rh TYPING

HISTORY:

1939 - Levine and Stetson definedD antigen(Rh factor)

1949 - Landsteiner and Weiner discovered anti Rh (named after Rhesus monkey)

Rh TYPING

- Rh blood group system is second in significance after ABO system.
- Genes that control the system are present on chromosome 1
- □Consists of over 50 related Ags.

□Important genes are D,C,E,c,e.

- All Rh antigen are controlled by 2 genes
- RHD gene- determines expression of D
- RHCE encodes for C,c and E,e.

- RhD is a strong antigen (immunogenic) and other antigen are less antigenic than D and are of less clinical significance.
- Therefore, in practice Rh negative and Rh positive depends on presence of D antigen on the surface of red cells which is detected by strong anti-D serum.
- Occasionally, Anti D,C,E,c,e may develop in case of pregnancy or transfusion.

Rh positive

There is presence of D antigen.

These individuals constitute 80% of population.

Rh negative:

There is absence of D antigen. These individuals constitute 17% of population.

Cc and Ee antigen:

These are weak antigens and therefore risk of sensitisation is less than that of D antigen.

Rh antibody:

Unlike ABO system there is no naturally occurring antibodies against Rh antigens in Rh negative individuals.

www.FirstRanker.com

Immune Abs:

- Rh Abs develop against Rh Ag after exposure to Rh Ags following transfusion or pregnancy.
- But can be detected by enzyme treatment or coomb test(antiglobulin test)

SIGNIFICANCE:

Rh incompartibility results in haemolytic tranfusion reaction.

Haemolytic disease of newborn.

ERYTHROBLASTOSIS FETALIS

TECHNIQUES:

1) slide method

2) Tube method

SLIDE METHOD:

- Place one drop of anti D on slide.
- Add one drop of blood and mix well with stick
- Wait for 5 min and observe.

RESULT:

 Agglutination indicates Rh positive blood samples.

IMPORTANCE OF BLOOD GROUPING AND Rh TYPING:

- In blood transfusion
- Haemolytic disease of newborn.
- Paternity dispute
- Medicolegal issues
- Immunology, genetics, anthropology
- Susceptibility to various disease(blood group O peptic ulcer Blood group A gastric ulcer)

CROSS MATCHING

- Also known as compatibility testing.
- It is the most important test before a blood transfusion is given.
- The primary purpose of cross matching is to detect ABO incompatibilities between donor and recipient.
- This is carried out to prevent transfusion reactions by detecting Abs in recipient's serum.

- Two main functions of cross matching test:
 - 1)It is a confirm ABO compatibility between donor and recipient.

www.FirstRanker.com

2)It may detect presence of irregular Ab in patient's serum that will react with donor RBCs.

- Cross matching test can be
 - 1) major
 - 2) minor

MAJOR CROSS MATCH TEST: Mixing the patient's plasma with donor RBCs.

MINOR CROSS MATCH TEST:

mixing the donor's plasma with patient's RBCs.

SCREENING TESTS BEFORE BT:

- Malaria
- □ Syphilis
- **HBV**
- **HCV**
- HIV