

Applications of ABG

- To document respiratory failure and assess its severity.
- To monitor patients on ventilators and assist in weaning.
- To assess acid base imbalance in critical illness.
- To assess response to therapeutic interventions and mechanical ventilation

ABG EQUIPMENT

- Blood gas analyzers use electrodes to determine pH, partial pressure of carbon dioxide and partial pressure of oxygen in the blood.
- It consist of three electrodes measuring pH, pCO₂ and pO₂ at 37 degree
- It may also measure electrolytes like **sodium**, **potassium** and **chloride**.
- From these outputs, internal computers calculate oxygen saturation, base excess and bicarbonate level.

Normal serum electrolyte and arterial blood gas values.

www.FirstRanker.com

- □ pH = 7.4
- ☐ Bicarbonate = 22-26 mmol/L
- Chloride = 96-106 mmol/L
- □ Potassium = 3.5–5 mmol/L
- □ Sodium = 136-145 mmol/L
- \bigcirc pO₂ = 95 (85–100) mm Hg
- \square pCO₂ = 40 (35-45) mm Hg

Case Study

• 1. Sheela aged 19 years brought to casuality at 11 AM with dizziness, tingling of fingers, sweating, breathing heavily and nausea. O/E: Hyperventilation, carpopedal spasm was found.

www.FirstRanker.com

Laboratory data:

• pH **7.55**

• Pco₂ **20 mm Hg**

HCO₃24 mmoles/I

- 1. What kind of acid-base disorder is this girl suffering from? Explain.
- 2. What are the common causes of this kind of disorder?
- 3. Give the compensatory mechanism available in the body to correct this sort of acid-base imbalance.

- 1. Respiratory alkalosis (uncompensated)
- Tingling of fingers and carpopedal spasm is due to reduction in ionized calcium caused by increased binding of calcium to albumin in alkaline pH of ECF.

www.FirstRanker.com

- 2. Common cause of respiratory alkalosis is functional hyperventilation due to anxiety disorders.
- It also occurs in cases where the respiratory center in medulla is over stimulated as in encephalitis, intracranial surgery, salicylate poisoning and chronic liver disease

- 3. In respiratory alkalosis, there is loss of CO2 leading to decrease in pCO2 and increase in bicarbonate to carbonic acid ratio.
- In an attempt to return the pH towards normal, kidney excrete more bicarbonate in urine so that bicarbonate -carbonic acid ratio is brought back to normal

 Ramakrishnan, 60 years old, a known smoker attended casuality with exacerbation of bronchial asthma. The acid base analysis report is given below. Give your interpretation.

Laboratory data:

• pH **7.04**

Pco2
90 mm Hg

HCO3
24 meq/L

Respiratory acidosis

- Asthma attack are characterized by episodes of airway obstruction leading to retention of CO₂, leading to increase pCO₂, decreased bicarbonate to carbonic acid ratio.
- Renal compensatory mechanisms tend to retain bicarbonate in the blood which in turn help to raise the bicarbonate-carbonic acid in order to attain 20:1 ratio so that normal pH is restored.
- Generally respiratory acidosis is caused by disorders that interfere with respiratory activity- pneumonia, asthma, pulmonary edema, COPD
- Morphine and barbiturate poisoning cause of depression of respiratory centre leading to respiratory acidosis.

 A woman complaining of intractable vomiting suspected of suffering from pyloric stenosis receiving treatment showed following acid base data on day 1 and day 2.

Laboratory data on day 1:

• pH **7.6**

• pCO₂ **40 mm Hg**

HCO₃
35 meq/L

Laboratory data on data 2:

• pH **7.55**

pCO2
45 mm Hg

HCO328 meq/L

Kumaran, 58 year old peon in a private firm has been suffering from DM for the past 20 years. He was taking irregular treatment for DM. One day he was brought to the casuality in a stuperosed state. O/E: Fruity odor in breath, Kussmaul's type of breathing

Laboratory data

- Urine Rothera's Test **Positive**
- Plasma Glucose- 450 mg/dl

ABG analysis report

•	рН	7.2
•	pCO ₂	40 mm Hg
•	HCO ₃	15 meq/L
•	Na	140 mmol/L
•	K	4 mmol/L
•	Cl	102 mmol/L

- 1. What is the problem diagnosis? Explain.
- 2. Calculate the anion gap from given laboratory data?
- 3. What is the value of normal anion gap?